Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), ISSN

Similar documents
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), ISSN

General Relativity and Cosmology Mock exam

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Stochastic Mechanics of Particles and Fields

G : Statistical Mechanics

Stochastic equations for thermodynamics

2.3 Calculus of variations

Dynamic and Thermodynamic Stability of Black Holes and Black Branes

A path integral approach to the Langevin equation

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

Some topics in sub-riemannian geometry

Hydrodynamics, Thermodynamics, and Mathematics

An introduction to General Relativity and the positive mass theorem

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

arxiv: v1 [math-ph] 2 Apr 2013

Quantum Field Theory Notes. Ryan D. Reece

Lecture 6: Irreversible Processes

GEOMETRIC QUANTIZATION

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

LAGRANGIAN AND HAMILTONIAN

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

14 Renormalization 1: Basics

Liouville integrability of Hamiltonian systems and spacetime symmetry

Finsler Structures and The Standard Model Extension

Geometric inequalities for black holes

Modern Geometric Structures and Fields

Generalization of the Hamilton-Jacobi approach for higher order singular systems

Preliminaries: what you need to know

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Chapter 4: Lagrangian Formalism

BACKGROUND IN SYMPLECTIC GEOMETRY

AN EXTENSION OF HAMILTONIAN SYSTEMS TO THE THERMODYNAMIC PHASE SPACE: TOWARDS A GEOMETRY OF NONREVERSIBLE PROCESSES. and A. J.

arxiv: v1 [math-ph] 12 Apr 2017

RANDERS METRICS WITH SPECIAL CURVATURE PROPERTIES

Introduction to thermodynamics

AN AFFINE EMBEDDING OF THE GAMMA MANIFOLD

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Hamiltonian Systems of Negative Curvature are Hyperbolic

WHY BLACK HOLES PHYSICS?

Introduction to Statistical Thermodynamics

Summer Lecture Notes Thermodynamics: Fundamental Relation, Parameters, and Maxwell Relations

Information geometry for bivariate distribution control

Dually Flat Geometries in the State Space of Statistical Models

NONLINEAR CONNECTION FOR NONCONSERVATIVE MECHANICAL SYSTEMS

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

Cosmological constant is a conserved charge

arxiv: v2 [gr-qc] 9 Jan 2019

LANGEVIN EQUATION AND THERMODYNAMICS

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), ISSN

On isometries of Finsler manifolds

Question 1: Axiomatic Newtonian mechanics

Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics

Gauge Fixing and Constrained Dynamics in Numerical Relativity

A Very General Hamilton Jacobi Theorem

Classical Statistical Mechanics: Part 1

Legendre Transforms, Calculus of Varations, and Mechanics Principles

A new perspective on the Kosambi-Cartan-Chern theory, and its applications

Lagrangian fluid mechanics

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

Classical Oscilators in General Relativity

Bulletin of the Transilvania University of Braşov Vol 7(56), No Series III: Mathematics, Informatics, Physics, 1-12

2 Equations of Motion

Thermodynamics of phase transitions

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press)

MatFys. Week 5, Dec , 2005

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Deriving quantum mechanics from statistical assumptions

One of the fundamental problems in differential geometry is to find metrics of constant curvature

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Lecture: Lorentz Invariant Dynamics

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

ON COLISSIONS IN NONHOLONOMIC SYSTEMS

Finite dimensional thermo-mechanical systems and second order constraints

Physical Dynamics (SPA5304) Lecture Plan 2018

Holographic Entanglement Entropy

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Coordinate systems and vectors in three spatial dimensions

Physics 172H Modern Mechanics

Hans Christian Öttinger. Department of Materials, ETH Zürich, Switzerland

Final reading report: BPHZ Theorem

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

Mean-field equations for higher-order quantum statistical models : an information geometric approach

arxiv:math-ph/ v1 22 May 2003

Non-associative Gauge Theory

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs.

Path integration in relativistic quantum mechanics

PHYS 705: Classical Mechanics. Hamiltonian Formulation & Canonical Transformation

Port contact systems for irreversible thermodynamical systems

Lifting General Relativity to Observer Space

Lagrangian for Central Potentials

Logarithmic Sobolev Inequalities

Transcription:

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), 377 382 www.emis.de/journals ISSN 1786-0091 FINSLER STRUCTURE IN THERMODYNAMICS AND STATISTICAL MECHANICS TAKAYOSHI OOTSUKA Abstract. We consider the Finsler structure and contact structure in variational principle of equilibrium thermodynamic theory. Einstein s statistical thermodynamic theory was proposed as a statistical mechanics using macroscopic thermodynamic variables as stochastic variables. We generalise Einstein s statistical theory from Finsler geometrical viewpoint, and operating inverse process of variation, path integration, we propose a new statistical theory. Einstein s theory becomes the WKB approximation of our new theory. 1. Geometrisation of Mechanics We present the Finsler structure in thermodynamics and statistical mechanics. Before that, we will sketch Finsler and contact structure in mechanics. Conventionally, Lagrange mechanics is defined on configuration space Q. The configuration space have no geometric structure. But there is Finsler structure on an extended configuration space which is time together with configuration space: M = R Q. On the extended space M, Lagrangian mechanics can be considered as Finsler geometry. If the conventional Lagrangian L(x, ẋ, t) is given, we can define a Finsler function F(t, x, dt, dx) = L ( x, dx dt, t) dt on M. Then using Finsler function, the action A[γ] of curve γ : [s 0, s 1 ] R M is defined by A[γ] = γ F(x, dx) = s1 s 0 F ( ) x (s), dx (s) ds. ds From homogeneity condition of F, the action A[γ] is reparametrisation invariant, so it defines geometric length. From the principle of least action δa[γ c ] = 2000 Mathematics Subject Classification. 53B40. Key words and phrases. Finsler structure, contact structure, equilibrium thermodynamic theory. 377

378 TAKAYOSHI OOTSUKA 0, we can get Euler-Lagrange equation of motion δa δγ = 0. The important thing is, that this equation of motion is not only time coordinate free, but also space coordinate free. So, equation of motion becomes a geodesic equation. This is the geometrisation of mechanics. For physics from the general principle of relativity, which says that the physical phenomena should be described by geometry, we should consider Lagrangian mechanics as Finsler geometry. So we call this Finsler Lagrangian mechanics. 2. Hamilton formalism Next we review Hamiltonian formalism for Finsler Lagrangian mechanics. We define conjugate momentum p = F y from Finsler function F(x, y). From homogeneity condition of Finsler function : y F y = F, this momentum p have ( p ) 0-th homogeneity: p (x, λy) = p (x, y) or y ν p y = 0. Therefore, det ν y = 0 ν and there is a constraint equation G(x, p) = 0. This function G is a covariant Hamiltonian, or, state equation in thermodynamics. The action given by this Hamiltonian is dx A[γ] = (p ) ds λg ds, γ where λ is a Lagrange multiplier and s is an arbitrary parameter. From the principle of least action, we get Hamilton equation and constraint, dx ds = λ G p, dp ds = λ G x, G = 0. We should call these covariant Hamilton equations. This is the Hamiltonian formalism for Finsler Lagrangian mechanics. 3. Geodesic distance Here we review geodesic distance in Finsler Lagrangian mechanics. Using solution of equation of motion γ c, which is a geodesic curve, we can define geodesic distance W(x 1, x 0 ) = A[γ c ] = γ c p dx between two points x 0 and x 1. W(x 1, x 0 ) is a value of action evaluated on geodesic curve between x 0 and x 1. In language of physics, W corresponds to Hamilton s principal function. By taking variation of this action, we get δw(x 1, x 0 ) = p 1 δx 1 p 0 δx 0, so p = W x. Substituting this into the constraint equation G(x, p) = 0, we can get the Hamilton-Jacobi equation G ( ) x, W x = 0, which is in the covariant form. Here we make a brief statement about the relation to contact geometry, which we will return in the latter section. Let Σ be submanifold of T M, defined by the constraint G(x, p) = 0. Σ corresponds to extended phase space of mechanics or thermodynamics. With Θ = p dx, (Σ, Θ) becomes a contact manifold. This contact manifold can be considered as the stage of covariant Hamiltonian formalism.

FINSLER STRUCTURE IN THERMODYNAMICS AND STATISTICAL MECHANICS 379 4. Variational principle of thermodynamics We discuss the variational principle in thermodynamics, which is a good example of Finsler structure. That is, thermal configuration space M can be considered simply as the space of extensive variables {(E, V )}. E, V represent energy and volume of the thermal system respectively. Then the second law of thermodynamics is represented by the following inequality relation. (1) ds δq T ex LHS is the infinitesimal entropy difference of thermal points, and RHS is the given amount of heat by the heat bath. If equal, then the thermal process is reversible, which is also called quasi-static change in physics. If not, the thermal process is irreversible. In conventional physics, RHS of (1) could not be written more accurately. But here, we will assume that RHS of (1) can be represented by Finsler function: δq T ex = F(E, V, de, dv ). That is to say, the infinitesimal thermal process between (E, V ) and (E+dE, V + dv ) can be given by Finsler function F(E, V, de, dv ). Then the thermal configuration space becomes Finsler manifold (M, F). For later convenience, We write F(E, V, de, dv ) as F(E, V, de, dv ) = p e (X, Ẋ)Ėds + p v(x, Ẋ) V ds using the conjugate momentum of E and V, and considering homogeneity condition of F. Here, X represents E or V and s is an arbitrary parameter. By this assumption, the action of thermodynamic process becomes A[γ] = γ F(X, dx), where γ represents the thermodynamic process. Then we can get reversible process or quasi-static change as a maximum change of this action. So quasi-static change γ c is given as a geodesic δa[γ c ] = 0. 5. Analogy with Mechanics Table 1 shows the analogy between thermodynamics and mechanics [10]. Entropy S corresponds to the geodesic distance W. First law of reversible thermodynamics ds = kβde kβpdv corresponds to dw = p dx. State equation of thermodynamics f(e, V, T, p) = 0 is in analogy to a constraint G = 0. Hamilton-Jacobi equation G ( ) x, W x = 0 in mechanics corresponds to f ( E, V, S E, ) S V = 0 which is Hamilton-Jacobi equation of thermodynamics. The relations corresponding to Hamilton equation and action functional are unknown. But still we can understand these in a special example, ideal gas.

380 TAKAYOSHI OOTSUKA thermodynamics S analytical mechanics W ds = kβde kβpdv dw = p dx f(e, V, T, p) = 0 G(x, p ) = 0 f ( E, V, S E, ) ( ) S V = 0 G x, W x = 0 dx ds = λ G p, dp ds = λ G x A[γ] = γ F(x, dx) Table 1. Analogy between thermodynamics and mechanics 6. Geometrisation of thermodynamics Here we will construct Finsler structure or contact structure of thermodynamics taking a special and simple example, ideal gas. At the beginning, we do not know the Finsler function of thermal configuration space (M, F) = ({(E, V )}, F) neither the action A[γ] = γ F(X, dx). But we do know the entropy S = A[γ c] = γ c F(X, dx), which is the geodesic distance. So, we can determine the Finsler structure by considering the Hamiltonian formalism. Thermal phase space is a submanifold Σ of T M. T M is the space of extensive and intensive variables. For example, the coordinates of the space, are E, V, T: temperature, p: pressure. The submanifold Σ, which is the thermal phase space, is determined by thermal state equation G 1 (E, V, T, p) = 0. For ideal gas, G 1 = pv 2 3 E = 0. Instead of T and p, we use p e = S E = 1 kt and p v = S V = p kt that are conjugate momentum of E and V. Then by (Σ, Θ = p dx ) we can regard this as a contact structure of thermodynamics. But in this case contact form Θ becomes singular by coincidence: dθ Θ = 0. Therefore, we must take further gaugefixing conditon G 2 (E, V, p e, p v ) = 0. Considering these conditions, we obtain the action for Hamiltonian formalism, where λ 1, λ 2 are the Lagrange multipliers; A[γ] = p e de + p v dv + λ 1 (p v V 2 3 p ee)ds + λ 2 G 2 (E, V, p e, p v )ds. γ The Hamilton equations of thermodynamics are { de ds = 2 3 λ G 1E λ 2 dv 2 p e, ds = λ G 1V λ 2 2 p v, dp e ds = 2 3 λ G 1p e + λ 2 2 E, dp v ds = λ G 1p v + λ 2 2 V. And these solution becomes p e = re 1, p v = 3rV 1 where r is a constant. It is important to notice that usually the ideal gas is defined by the state equation pv = 2 3E and E = rt. However, we can get the latter relation from

FINSLER STRUCTURE IN THERMODYNAMICS AND STATISTICAL MECHANICS 381 Hamilton equation. Therefore we are able to construct the Finsler structure of thermodynamics if we have the state equation. 7. Einstein s thermal statistics Here is another story of statistical thermodynamics by Einstein. Usually statistical mechanics is based on microscopic point of view. But Einstein proposed the statistical thermodynamics from macroscopic point of view. In thermodynamics, all the thermal variables are definite values in equilibrium state. But even in this equilibrium state, an accurate observation shows that these variables have fluctuation. Therefore, Einstein considered these variables as stochastic variables. He proposed the measure of these variables as P(α) exp The average of these variables α i are given by α i = dαα i exp [ S(α) k [ S(α) k ]. ]. However, Einstein s theory is not so useful for physics for its lack of accuracy. In the next section we will generalise Einstein s theory using the previous discussion. 8. Generalise Einstein s theory We will generalise Einstein s statistical thermodynamics by using the Finsler structure of thermodynamics. We consider the analogy to the construction of quantum mechanics from classical mechanics. By taking the inverse operation of variation, a more fundamental quantum theory can be obtained from classical Lagrangian mechanics. δa[γ c ] = 0 quantisation = Ψ = ( ) i δγ exp A[γ] This is what Feynman had proposed. Similarly, by inverse operation of variation, we can construct a more fundamental theory, a new statistical theory which is a generalisation of Einstein s theory. δa[γ c ] = 0 statisticalisation = P = ( ) 1 δγ exp k A[γ] By using the technique of Finsler path integral proposed by Ootsuka and Tanaka [7], we can define this new statistical theory formally. Evidently, we can regard the Einstein s theory as a WKB approximation of this new theory. 9. Discussion The geometrisation of thermodynamics in the perspective of contact structure was initiated by Caratheodory, leading to works of Hermann [3] and Mruga la et al s [6]. On the other hand, introduction of a Riemannian structure to thermodynamical phase space was proposed by Ruppeiner [9]. Janyszek-Mruga la [4] makes a research from a standpoint of information geometry [1]. Thermodynamics in curved spacetime or Finsler spacetime was considered by Antonelli- Zastawniak [2] and Vacaru [11]. Our research is based on the Finsler structure,

382 TAKAYOSHI OOTSUKA or contact structure, which could be naturally derived from the thermal state equation describing the second law of thermodynamics. As far as we know, the research which points out clearly to the existence of these geometrical structure is done only by Suzuki [10]. Our motivation of geometrisation of thermodynamics and generalisation of Einstein s theory is very similar to one s of Mruga la [5] and Ruppeiner [8], however, it is different in the sense that we utilise point Finsler geometry, and also our previous work Finsler pathintegral [7] as a tool to generalise Einstein s statistical mechanics. Acknowledgments We thank Lajos Tamássy for helpful advice on point Finsler geometry. We thank Erico Tanaka and astrophysics laboratory of Ochanomizu University for discussions. The work is greatly inspired by late Yasutaka Suzuki. References [1] S.-i. Amari and H. Nagaoka. Methods of information geometry, volume 191 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2000. Translated from the 1993 Japanese original by Daishi Harada. [2] P. L. Antonelli and T. J. Zastawniak. Diffusions on Finsler manifolds. In Proceedings of the XXV Symposium on Mathematical Physics (Toruń, 1992), volume 33, pages 303 315, 1993. [3] R. Hermann. Geometry, physics, and systems. Marcel Dekker Inc., New York, 1973. Pure and Applied Mathematics, Vol. 18. [4] H. Janyszek and R. Mruga la. Geometrical structure of the state space in classical statistical and phenomenological thermodynamics. Rep. Math. Phys., 27(2):145 159, 1989. [5] R. Mruga la. Riemannian and Finslerian geometry in thermodynamics. Open Systems & Information Dynamics, 1(3):379 396, 1992. [6] R. Mruga la, J. D. Nulton, J. C. Schön, and P. Salamon. Contact structure in thermodynamic theory. Rep. Math. Phys., 29(1):109 121, 1991. [7] T. Ootsuka and E. Tanaka. Finsler geometrical path integral, 2009. [8] G. Ruppeiner. New thermodynamic fluctuation theory using path integrals. Phys. Rev. A, 27(2):1116 1133, Feb 1983. [9] G. Ruppeiner. Riemannian geometry in thermodynamic fluctuation theory. Rev. Modern Phys., 67(3):605 659, 1995. [10] Y. Suzuki. Finsler geometry in classical physics. Journal of the College of Arts and Sciences, 2, 1956. [11] S. I. Vacaru. Locally anisotropic kinetic processes and thermodynamics in curved spaces. Ann. Physics, 290(2):83 123, 2001. Physics Department, Ochanomizu University, 2-1-1 Ootsuka Bunkyo Tokyo, Japan E-mail address: ootsuka@cosmos.phys.ocha.ac.jp