Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m

Similar documents
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

MEASUREMENTS FOR THE R PROCESS AT IGISOL. Anu Kankainen University of Jyväskylä

Spectroscopy of 252No to Investigate its K-isomer

Towards TASCA

* * TASCA in Small Image Mode Spectroscopy

Gamma spectroscopy in the fermium region at SHIP

On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI

Nuclear Structure Studies with Penning Traps

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

RITU and the GREAT Spectrometer

Fritz Peter Heßberger

FISSION YIELD MEASUREMENTS WITH JYFLTRAP

Results from the FRS Ion Catcher with projectile and fission fragments

Precision mass measurements of radioactive nuclei at JYFLTRAP

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Trap assisted decay spectroscopy setup at ISOLTRAP

The Helmholtz Institute Mainz. Structure, Symmetry, and Stability

Laser spectroscopy of actinides at the IGISOL facility, JYFL. Iain Moore University of Jyväskylä, Finland

The new isotopes 240 Es and 236 Bk

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues

Pursuing mass resolving power of 10 6 : Commissioning of IGISOL 4

α decay studies of the nuclides 218 Uand 219 U

arxiv: v1 [nucl-ex] 17 Apr 2008

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Isospin symmetry and proton decay: Identification of the 10 + isomer in 54 Ni

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

Investigation of radiative proton-capture reactions using high-resolution g-ray spectroscopy

Michigan State University, East Lansing MI48824, USA INTRODUCTION

TASISpec - A Highly Efficient Multi-coincidence Spectrometer for Nuclear Structure Investigations of the Heaviest Nuclei

From JYFLTRAP to MATS

Isomeric states in 208 Hg and 209 Tl populated in fragmentation of 238 U

Status & Future for In-Beam Spectrometers for Tagging at JYFL

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

A taste of Proton-rich nuclei. David Jenkins

PoS(NIC XI)248. Cross section measurements of 103 Rh(p, γ) 104 Pd with the Karlsruhe 4πBaF 2 detector

Atomic Physics with Stored and Cooled Ions

JYFL Accelerator Laboratory

Nustar Seminar

Quasi-free neutron and proton knockout reactions on 57 Ni

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

Decay Spectroscopy with EURICA in the region of 100 Sn

Laser Spectroscopy on Bunched Radioactive Ion Beams

Conversion Electron Spectroscopy in Transfermium Nuclei

Nuclear Structure of Superheavy Nuclei Investigated at GSI

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

New half-live results on very long-living nuclei

New data on β decay of exotic nuclei close to 100 Sn:

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Overview of JYFL TA Activities in ENSAR2

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Mass measurements of n-rich nuclei with A~70-150

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering

Precision Penning Trap Experiments with Exotic Ions

High-Resolution Laser Spectroscopy for Nuclear-Structure Studies

News from the chemistry of heaviest elements around flerovium, element Christoph E. Düllmann

Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

Beta-delayed neutron measurements with the BELEN detector

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

New Developments on the Recoil-Distance Doppler-Shift Method

Isomeric States In 208Hg And 209Tl Populated In Fragmentation Of 238U

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Superheavy-element spectroscopy: Correlations along element 115 decay chains

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

The new operation modes of JYFLTRAP. tio. M ore

What do we know experimentally about the N=149, N=151 and N=153 isotones?

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

C.J. Lister Argonne National Laboratory

What do we measure, and how do we measure it?

ISOMERIC STATES IN THE LIGHT Tc ISOTOPES

Nuclear astrophysics: experiments

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

arxiv:nucl-ex/ v2 18 Dec 2006

ANGULAR MOMENTUM POPULATION IN FRAGMENTATION REACTIONS

Exciting baryon resonances in isobar charge-exchange reactions

New half-live results on very long-living nuclei

High-spin Structure Studies in 62Zn

Accelerated radioactive beams and the future of nuclear physics. David Jenkins

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India

arxiv: v1 [nucl-ex] 21 May 2018

Revision of the K-Isomer in 190W

Synthesis of New Elements and New Approaches in SHE Research

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Shape coexistence in light Krypton isotopes

Measurement of the energy spectrum from the neutron source planned for IGISOL

Perspectives for laser spectroscopy of the heaviest elements

Non-analog β decay of 74 Rb

DSAM lifetime measurements for the chiral bands in 194 Tl

JRA-04 Detection of Low Energy Particles - DLEP. Monolithic DE-E telescope; prototype DSSSD + PAD telescope: results

ISOSPIN RESOLVED DOUBLE PION PRODUCTION AT CELSIUS

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

Transcription:

Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m Ch. Lorenz 1, L.G. Sarmiento 1, D. Rudolph 1, C. Fahlander 1, U. Forsberg 1, P. Golubev 1, R. Hoischen 1, N. Lalović 1,2, A. Kankainen 3, T. Eronen 3, L. Canete 3, D. Cox 3, J. Hakala 3, A. Jokinen 3, V. Kolhinen 3, J. Koponen 3, I. Moore 3, P. Papadakis 3, I. Pohjalainen 3, J. Reinikainen 3, S. Rinta-Antila 3, S. Stolze 3, A. Voss 3, M. Block 2,4,5, J. Gerl 2, D. Ackermann 2, M.L. Cortes 2, M. Dworschak 2, T. Habermann 2, F.P. Heßberger 2,4, J. Khuyagbaatar 2, I. Kojouharov 2, N. Kurz 2, D. Nesterenko 2, H. Schaffner 2, L.-L. Andersson 6, C. Droese 7, M. Eibach 5, J. Ketelaer 5 1 Department of Physics, Lund University, S-221 Lund, Sweden 2 GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany 3 Department of Physics, University of Jyväskylä, FI-414 Jyväskylä, Finland 4 Helmholtz-Institut Mainz, D-5599 Mainz, Germany 5 Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany 6 Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom 7 Universität Greifswald, D-17487 Greifswald, Germany

Outline 1. Geant4-aided Quantum-state Selec4ve Decay Spectroscopy Setup and Simula4on 2. The Alpha Decay Branching in 213 Ra 3. The Proton Decay Branching in 53 Co m? proton decay 1.53(1) MeV b p ~ 1.5% 213@88 Ra 213@87 Fr 29@86 213@86 Rn Rn 29@85 At 25@84 Po 29@84 Po 25@83 Bi 511 328 215 11 4. Conclusion & Outlook

Geant4-aided Quantum-state Selective Decay Spectroscopy Setup and Simulation

Setup and Simulation Incoming Beam Cocktail

Setup and Simulation Penning Trap Incoming Beam Cocktail

Setup and Simulation Penning Trap Incoming Beam Cocktail Purifica4on Trap Superconduc4ng Magnet (Measurement Trap)

Setup and Simulation Penning Trap Incoming Beam Cocktail Outgoing Beam A Single Quantum State Purifica4on Trap Superconduc4ng Magnet (Measurement Trap)

Setup and Simulation Penning Trap Detectors Incoming Beam Cocktail Outgoing Beam A Single Quantum State Purifica4on Trap Superconduc4ng Magnet (Measurement Trap)

Setup and Simulation Incoming Beam Cocktail Penning Trap Outgoing Beam A Single Quantum State Detectors Implanta4on DSSSD Purifica4on Trap Superconduc4ng Magnet (Measurement Trap)

Setup and Simulation Incoming Beam Cocktail Penning Trap Outgoing Beam A Single Quantum State Detectors Implanta4on DSSSD Purifica4on Trap Silicon Box 4x(DS)SSD Superconduc4ng Magnet (Measurement Trap)

Setup and Simulation Incoming Beam Cocktail Penning Trap Outgoing Beam A Single Quantum State Detectors Implanta4on DSSSD Purifica4on Trap Superconduc4ng Magnet (Measurement Trap) Silicon Box 4x(DS)SSD Cluster & Clover type HPGe Detectors

Setup and Simulation Incoming Beam Cocktail Penning Trap Outgoing Beam A Single Quantum State Detectors TASISpec [1] Implanta4on DSSSD Purifica4on Trap Superconduc4ng Magnet (Measurement Trap) Silicon Box 4x(DS)SSD Cluster & Clover type HPGe Detectors [1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (21).

Setup and Simulation Incoming Beam Cocktail Purifica4on Trap Penning Trap Superconduc4ng Magnet Outgoing Beam A Single Quantum State (Measurement Trap) Silicon Box 4x(DS)SSD Detectors TASISpec [1] The whole detector setup is implemented in Geant4 [2] Implanta4on DSSSD Cluster & Clover type HPGe Detectors [1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (21). [2] L.G. Sarmiento, L.-L. Andersson, D. Rudolph, Nucl. Instrum. Meth. A 667, 26 (212).

Setup and Simulation Incoming Beam Cocktail Purifica4on Trap Penning Trap Superconduc4ng Magnet Outgoing Beam A Single Quantum State (Measurement Trap) Silicon Box 4x(DS)SSD Detectors TASISpec [1] The whole detector setup is implemented in Geant4 [2] à Geant4-aided Quantum-state Selec5ve Decay Spectroscopy [1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (21). [2] L.G. Sarmiento, L.-L. Andersson, D. Rudolph, Nucl. Instrum. Meth. A 667, 26 (212). Implanta4on DSSSD Cluster & Clover type HPGe Detectors

Setup and Simulation Comparing virtual experiment with the real experiment how?

Setup and Simulation Comparing virtual experiment with the real experiment how? Comparing spectra: Gamma spectra Par4cle (alpha/proton) spectra Coincidence spectra

Setup and Simulation Comparing virtual experiment with the real experiment how? Comparing spectra: Gamma spectra Par4cle (alpha/proton) spectra Coincidence spectra Criteria: Spectrum shape Spectrum height (norm should be ~ 1) Peak intensi4es

Setup and Simulation Comparing virtual experiment with the real experiment how? Comparing spectra: Gamma spectra Par4cle (alpha/proton) spectra Coincidence spectra Criteria: Spectrum shape Spectrum height (norm should be ~ 1) Peak intensi4es Tune the parameters: à Branching ra4os, transi4on mul4polari4es, mixing ra4os,

Setup and Simulation Comparing virtual experiment with the real experiment how? Comparing spectra: Gamma spectra Par4cle (alpha/proton) spectra Coincidence spectra Criteria: Spectrum shape Spectrum height (norm should be ~ 1) Peak intensi4es Tune the parameters: à Branching ra4os, transi4on mul4polari4es, mixing ra4os, à

Setup and Simulation Comparing virtual experiment with the real experiment how? Comparing spectra: Gamma spectra Par4cle (alpha/proton) spectra Coincidence spectra Criteria: Spectrum shape Spectrum height (norm should be ~ 1) Peak intensi4es Tune the parameters: à Branching ra4os, transi4on mul4polari4es, mixing ra4os, à à Un4l it is self-consistent

The Alpha Decay Branching in 213 Ra

The Alpha-Decay Branching in 213 Ra 1/2-2.74(6) min 213@88 Ra 213 Ra

The Alpha-Decay Branching in 213 Ra 1/2-2.74(6) min 213@88 Ra 511 (1/2 - ) 328 215 11 28.8(1) min (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 29 Rn 213 Ra 211 212 Fr Fr 21 Rn 211 Rn

The Alpha-Decay Branching in 213 Ra 511 328 215 11 28.8(1) min 41 511 15 296 328 113 218 15 215 11 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 1/2-2.74(6) min 213@88 Ra 29 Rn 213 Ra 211 212 Fr Fr 21 Rn 211 Rn

The Alpha-Decay Branching in 213 Ra 1/2-2.74(6) min 213@88 Ra 511 328 215 11 28.8(1) min 41 511 15 296 328 113 218 15 215 11 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 29 Rn 211 Fr 21 Rn 213 Ra 212 Fr 211 Rn 29@85 At 5.42(5) h 27 At 28 At 29 At 21 At 25 Po 26 Po 27 Po 28 Po 29 Po 25@84 Po 1.74(8) h 124(3) y 29@84 Po 25 Bi 15.31(4) d 25@83 Bi

The Alpha-Decay Branching in 213 Ra 1/2-2.74(6) min 213@88 Ra 511 328 215 11 28.8(1) min 41 511 15 296 328 113 218 15 215 11 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 34.82(14) s 213@87 Fr 29 Rn 213 Ra 212 Fr 211 Fr 213 Fr 21 Rn 211 Rn 29@85 At 5.42(5) h 27 At 28 At 29 At 21 At 25 Po 26 Po 27 Po 28 Po 29 Po 25@84 Po 1.74(8) h 124(3) y 29@84 Po 25 Bi 15.31(4) d 25@83 Bi

The Alpha-Decay Branching in 213 Ra 1/2-2.74(6) min 213@88 Ra 511 328 215 11 28.8(1) min 41 511 15 296 328 113 218 15 215 11 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 34.82(14) s 213@87 Fr 19.5(1) ms 213@86 Rn 29 Rn 213 Ra 212 Fr 211 Fr 213 Fr 21 Rn 211 Rn 212 Rn 213 Rn 29@85 At 5.42(5) h 27 At 28 At 29 At 21 At 211 At 25 Po 26 Po 27 Po 28 Po 29 Po 25@84 Po 1.74(8) h 124(3) y 29@84 Po 25 Bi 15.31(4) d 25@83 Bi

The Alpha-Decay Branching in 213 Ra 511 328 215 11 28.8(1) min 41 511 15 296 328 113 218 15 215 11 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-5/2-29@86 Rn 1/2-2.74(6) min 213@88 Ra 8% α 2% β/ec es4mate 34.82(14) s 213@87 Fr 19.5(1) ms 213@86 Rn 29 Rn 213 Ra 212 Fr 211 Fr 213 Fr 21 Rn 211 Rn 212 Rn 213 Rn 29@85 At 5.42(5) h 27 At 28 At 29 At 21 At 211 At 25 Po 26 Po 27 Po 28 Po 29 Po 25@84 Po 1.74(8) h 124(3) y 29@84 Po 25 Bi 15.31(4) d 25@83 Bi

The Alpha Decay Branching in 213 Ra Many quan44es in the 213 Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3] [3] K. Valli et al., Phys. Rev. 161, 1284 (1967).

The Alpha Decay Branching in 213 Ra Many quan44es in the 213 Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3] Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra à 29 Rn [3] K. Valli et al., Phys. Rev. 161, 1284 (1967). [4] D.G. Raich et al., Z. Phys. A 279, 31 (1976). [5] P. Kuusiniemi et al., Eur. Phys. J. A 3 551(26).

The Alpha Decay Branching in 213 Ra Many quan44es in the 213 Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3] Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra à 29 Rn 213 Ra decay is a good candidate for a proof of principle for Geant4-aided Quantum-state Selec:ve Decay Spectroscopy [3] K. Valli et al., Phys. Rev. 161, 1284 (1967). [4] D.G. Raich et al., Z. Phys. A 279, 31 (1976). [5] P. Kuusiniemi et al., Eur. Phys. J. A 3 551(26).

The Alpha Decay Branching in 213 Ra Many quan44es in the 213 Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3] Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra à 29 Rn 213 Ra decay is a good candidate for a proof of principle for Geant4-aided Quantum-state Selec:ve Decay Spectroscopy Experiment @ GSI Darmstadt in 29 [3] K. Valli et al., Phys. Rev. 161, 1284 (1967). [4] D.G. Raich et al., Z. Phys. A 279, 31 (1976). [5] P. Kuusiniemi et al., Eur. Phys. J. A 3 551(26).

The Alpha Decay Branching in 213 Ra Many quan44es in the 213 Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3] Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra à 29 Rn 213 Ra decay is a good candidate for a proof of principle for Geant4-aided Quantum-state Selec:ve Decay Spectroscopy Experiment @ GSI Darmstadt in 29 Quantum-state selec:ve beam from SHIPTRAP (mass selec4on!) [6]: 1% pure beam of 213 Ra ground state [3] K. Valli et al., Phys. Rev. 161, 1284 (1967). [4] D.G. Raich et al., Z. Phys. A 279, 31 (1976). [5] P. Kuusiniemi et al., Eur. Phys. J. A 3 551(26). [6] M. Block et al., Eur. Phys. J. D 45, 39 (27).

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum Counts/1keV 12 1 8 6 4 Experiment Simulation 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum 511 328 215 11 29@86 Rn 213@88 Ra 213@87 Fr 213@86 Counts/1keV 12 1 8 6 4 Experiment Simulation 29@85 At 25@84 Po 29@84 Po 25@83 Bi 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum 511 328 215 11 29@86 Rn 213@88 Ra 213@87 Fr 213@86 Counts/1keV 12 1 8 6 4 Experiment Simulation 29@85 At 25@84 Po 29@84 Po 25@83 Bi 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum 511 328 215 11 29@86 Rn 213@88 Ra 213@87 Fr 213@86 Counts/1keV 12 1 8 6 4 Experiment Simulation 29@85 At 25@84 Po 29@84 Po 25@83 Bi 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum 511 328 215 11 29@86 Rn 213@88 Ra 213@87 Fr 213@86 Counts/1keV 12 1 8 6 4 Experiment Simulation 29@85 At 25@84 Po 29@84 Po 25@83 Bi 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Particle (α) spectrum 511 328 215 11 29@86 Rn 213@88 Ra 213@87 Fr 213@86 Counts/1keV 12 1 8 6 4 Experiment Simulation 29@85 At 25@84 Po 29@84 Po 25@83 Bi 2 4 45 5 55 6 65 E α [kev]

The Alpha Decay Branching in 213 Ra à Gamma spectrum 1 Counts/1keV 8 6 4 Experiment Simulation 2 6 8 11 12 14 16 18 2 22 E γ [kev]

The Alpha Decay Branching in 213 Ra 1/2 - à Gamma spectrum 1 511 328 215 11 15 296 41 511 328 218 113 15 215 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-213 11 5/2 - Counts/1keV 8 6 4 Experiment Simulation 29@86 Rn 2 6 8 11 12 14 16 18 2 22 E γ [kev]

The Alpha Decay Branching in 213 Ra 1/2 - à Gamma spectrum 1 511 328 215 11 15 296 41 511 328 218 113 15 215 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-213 11 5/2 - Counts/1keV 8 6 4 Experiment Simulation 29@86 Rn 2 6 8 11 12 14 16 18 2 22 E γ [kev]

The Alpha Decay Branching in 213 Ra 1/2 - à Gamma spectrum 1 511 328 215 11 15 296 41 511 328 218 113 15 215 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-213 11 5/2 - Counts/1keV 8 6 4 Experiment Simulation 29@86 Rn 2 6 8 11 12 14 16 18 2 22 E γ [kev]

The Alpha Decay Branching in 213 Ra 1/2 - à Gamma spectrum 1 511 328 215 11 15 296 41 511 328 218 113 15 215 (1/2 - ) (3/2 - ) (3/2 - ) 1/2-213 11 5/2 - Counts/1keV 8 6 4 Experiment Simulation 29@86 Rn 2 6 8 11 12 14 16 18 2 22 E γ [kev]

The Alpha Decay Branching in 213 Ra à Coincidence spectra Experiment Simulation 45 Counts/2keV 35 25 15 α-γ coincidence 5 5 54 58 62 66 E α [kev]

The Alpha Decay Branching in 213 Ra à Coincidence spectra Experiment Simulation 45 18 Counts/2keV 35 25 15 α-γ coincidence 14 1 6 Gate on X-rays 5 2 5 54 58 62 66 5 54 58 62 E α [kev] 66

The Alpha Decay Branching in 213 Ra à Coincidence spectra Experiment Simulation 45 18 Counts/2keV 35 25 15 α-γ coincidence 14 1 6 Gate on X-rays 2 15 1 25 Gate on 11keV gamma 5 2 5 5 54 58 62 66 5 54 58 62 66 5 54 58 62 66 E α [kev]

The Alpha Decay Branching in 213 Ra 1.2 1. α spectrum γ spectrum α spectrum gated on X-rays α spectrum gated on 11keV γ norm.98 213 Ra 212 Fr 211 Fr 213 Fr.96 29 Rn 21 Rn 211 Rn 212 Rn 213 Rn 27 At 28 At 29 At 21 At 211 At.94 25 Po 26 Po 27 Po 28 Po 29 Po 8 83 BR( 213 Ra α 29 Rn) [%] 86 25 Bi

The Alpha Decay Branching in 213 Ra What has changed?

The Alpha Decay Branching in 213 Ra What has changed? 1/2-213@88 Ra 511 328 215 11 15 296 41 511 218 113 328 - (1/2 ) - (3/2 ) - (3/2 ) 215 15-1/2 11-5/2 29@86 Rn 213@87 Fr

The Alpha Decay Branching in 213 Ra What has changed? 1/2-213@88 Ra 511 328 215 11 15 296 41 511 218 113 328 - (1/2 ) - (3/2 ) - (3/2 ) 215 15-1/2 11-5/2 29@86 Rn 213@87 Fr

The Alpha Decay Branching in 213 Ra What has changed? 1/2-213@88 Ra 511 328 215 11 15 296 41 511 218 113 328 - (1/2 ) - (3/2 ) - (3/2 ) 215 15-1/2 11-5/2 29@86 Rn 213@87 Fr

The Alpha Decay Branching in 213 Ra What has changed? 1/2-213@88 Ra 511 328 215 15 296 41 511 218 113 328 - (1/2 ) - (3/2 ) - (3/2 ) 213@87 Fr 11 215 15 1/2-11 5/2-29@86 Rn δ(e2/m1) ~.5

The Proton Decay Branching in 53 Co m

The Proton Decay Branching in 53 Co m 3174 19/2-247(12)ms 53@27 Co 242(8)ms 7/2 -

The Proton Decay Branching in 53 Co m 3174 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-162 ~1% 9/2-1328 42(8)% 56(8)% 9/2-7/2-8.51(2)min 53@26 Fe 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 3.7(4) 1 6 y

The Proton Decay Branching in 53 Co m 3174 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-2.54(2)min 162 ~1% 9/2-234 1328 42(8)% 34 56(8)% 19/2-11/2-9/2-7/2-8.51(2)min 53@26 Fe 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 3.7(4) 1 6 y

The Proton Decay Branching in 53 Co m 3174 19/2-247(12)ms 53@27 Co 242(8)ms + 8.275(8)h 7/2-52@26 Fe 2.54(2)min 162 ~1% 9/2-234 1328 42(8)% 34 56(8)% 19/2-11/2-9/2-7/2-8.51(2)min 53@26 Fe 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 3.7(4) 1 6 y

The Proton Decay Branching in 53 Co m 3174 19/2-247(12)ms 53@27 Co 2.54(2)min ~1% 42(8)% 56(8)% 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 162 9/2-34 234 1328 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-8.51(2)min 53@26 Fe 242(8)ms 7/2-99% 1% + 546 52@26 378 Fe 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr +

The Proton Decay Branching in 53 Co m 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 2.54(2)min 162 ~1% 9/2-42(8)% 34 234 1328 56(8)% 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-3174 8.51(2)min 53@26 Fe 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-99%? 1% + 546 52@26 378 Fe proton decay 1.53(1) MeV b p ~ 1.5% 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr +

The Proton Decay Branching in 53 Co m Proton radioac4vity was discovered in 197 in the 19/2 - isomeric state of 53 Co [7,8] [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (197). [8] J. Cerny et al., Phys. Lett. 33B, 284 (197).

The Proton Decay Branching in 53 Co m Proton radioac4vity was discovered in 197 in the 19/2 - isomeric state of 53 Co [7,8] half-life T 1/2 Q-value Branching ra4o b p [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (197). [8] J. Cerny et al., Phys. Lett. 33B, 284 (197).

The Proton Decay Branching in 53 Co m Proton radioac4vity was discovered in 197 in the 19/2 - isomeric state of 53 Co [7,8] half-life T 1/2 à measured Q-value à measured Branching ra4o b p [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (197). [8] J. Cerny et al., Phys. Lett. 33B, 284 (197).

The Proton Decay Branching in 53 Co m Proton radioac4vity was discovered in 197 in the 19/2 - isomeric state of 53 Co [7,8] half-life T 1/2 à measured Q-value à measured Branching ra4o b p à estimated to b p ~ 1.5% [9] [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (197). [8] J. Cerny et al., Phys. Lett. 33B, 284 (197). [9] J. Cerny et al., Nucl. Phys. A188, 666 (1972).

The Proton Decay Branching in 53 Co m Proton radioac4vity was discovered in 197 in the 19/2 - isomeric state of 53 Co [7,8] half-life T 1/2 à measured Q-value à measured Branching ra4o b p à estimated to b p ~ 1.5% [9] Experiment @ University of Jyväskylä (JYFL) in 215 Quantum-state selec:ve beams from JYFLTRAP (mass selec4on!) [1]: 1% pure beams of 53 Co, 53 Co m, 52 Fe, 53 Fe m [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (197). [8] J. Cerny et al., Phys. Lett. 33B, 284 (197). [9] J. Cerny et al., Nucl. Phys. A188, 666 (1972). [1] V.S. Kolhinen et al., Nucl. Instrum. Meth. A 528, 776 (24)

The Proton Decay Branching in 53 Co m 3174 19/2-53@27 Co 247(12)ms 242(8)ms 7/2-2.54(2)min 34 234 1328 53@26 Fe 19/2-11/2-9/2-7/2-8.51(2)min

The Proton Decay Branching in 53 Co m 3174 19/2-53@27 Co 247(12)ms 242(8)ms 7/2-2.54(2)min 34 234 1328 53@26 Fe 19/2-11/2-9/2-7/2-8.51(2)min

The Proton Decay Branching in 53 Co m 3174 19/2-53@27 Co 247(12)ms 242(8)ms 7/2-2.54(2)min 34 234 1328 53@26 Fe 19/2-11/2-9/2-7/2-8.51(2)min

The Proton Decay Branching in 53 Co m 3174 19/2-53@27 Co 247(12)ms 242(8)ms 7/2-2.54(2)min 34 234 1328 53@26 Fe 19/2-11/2-9/2-7/2-8.51(2)min Problem: the decay of the 7/2 - ground-state and the 19/2 - isomer of 53 Co to their isobaric analogue states (IAS) in 53 Fe are nearly iden4cal!

The Proton Decay Branching in 53 Co m 3174 19/2-53@27 Co 247(12)ms 242(8)ms 7/2-2.54(2)min 34 234 1328 53@26 Fe 19/2-11/2-9/2-7/2-8.51(2)min Problem: the decay of the 7/2 - ground-state and the 19/2 - isomer of 53 Co to their isobaric analogue states (IAS) in 53 Fe are nearly iden4cal! à Quantum-state selec:ve radioac4ve beams needed

The Proton Decay Branching in 53 Co m Experiment Counts/5keV 1 2 1 1 5 1 15 2 25 Particle Energy E p [kev]

The Proton Decay Branching in 53 Co m Simula4on Experiment Counts/5keV 1 2 1 1 Counts/5keV 1 2 1 5 1 15 2 25 Particle Energy E p [kev] 1 5 1 15 2 25 Particle Energy E p [kev]

The Proton Decay Branching in 53 Co m Simula4on Experiment Counts/5keV 1 3 1 2 1 1 2 4 6 8 1 12 14 16 Particle Energy E p [kev]

The Proton Decay Branching in 53 Co m Simula4on Experiment Counts/5keV 1 3 1 2 1 proton decay branch b p 1.5% 1 2 4 6 8 1 12 14 16 Particle Energy E p [kev]

The Proton Decay Branching in 53 Co m 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 2.54(2)min 162 ~1% 9/2-42(8)% 34 234 1328 56(8)% 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-3174 8.51(2)min 53@26 Fe 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-99%? 1% + 546 52@26 378 Fe proton decay 1.53(1) MeV b p ~ 1.5% 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr +

The Proton Decay Branching in 53 Co m 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 2.54(2)min 162 ~1% 9/2-42(8)% 34 234 1328 56(8)% 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-3174 8.51(2)min 53@26 Fe 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-99%? 1% + 546 52@26 378 Fe proton decay 1.53(1) MeV b p ~ 1.5% 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr +

The Proton Decay Branching in 53 Co m 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 2.54(2)min 162 ~1% 9/2-42(8)% 34 234 1328 56(8)% 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-3174 8.51(2)min 53@26 Fe 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-99%? 1% + 546 52@26 378 Fe proton decay 1.53(1) MeV b p 1.5% 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr + Branching ra4o b p à measured to b p 1.5%

The Proton Decay Branching in 53 Co m 378 5/2-7/2-3/2-53@25 Mn 53@24 Cr 1% 2.54(2)min 162 ~1% 9/2-42(8)% 34 234 1328 56(8)% 3.7(4) 1 6 y 19/2-11/2-9/2-7/2-3174 8.51(2)min 53@26 Fe 19/2-247(12)ms 53@27 Co 242(8)ms 7/2-99%? 1% + 546 52@26 378 Fe proton decay 1.53(1) MeV b p 1.5% 8.275(8)h 5.591(3)d 1418 1 + 2 + 6 + 52@25 Mn 1434 21.2(2)min 98% 2 + 52@24 Cr + Branching ra4o b p à measured to b p 1.5%

Conclusion & Outlook

Conclusion & Outlook 1% pure beams + detectors system TASISpec + Geant4 Simula4on

Conclusion & Outlook 1% pure beams + detectors system TASISpec + Geant4 Simula4on New branching ra4os in 213 Ra and 53 Co m New mixing ra4os in 29 Rn Papers are in preparation for the two projects 213 Ra & 53 Co m

Conclusion & Outlook Simula5on aided Quantum-State Selec5ve Decay Spectroscopy proofs to be a valuable technique to inves4gate cases where decay parers are not unambiguous ( 53 Co m ) but also for reviewing/remeasuring older decay data ( 213 Ra)

Thank you for your Attention

TASISpec in Jyväskylä