B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

Similar documents
QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

Recent Developments in Quantum Dynamics of Spins

Spins Dynamics in Nanomagnets. Andrew D. Kent

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Intermolecular interactions (dipolar and exchange)

Decoherence in molecular magnets: Fe 8 and Mn 12

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Quantum dynamics in Single-Molecule Magnets

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Spin electric coupling and coherent quantum control of molecular nanomagnets

Chapter 8 Magnetic Resonance

Magnetic Resonance in Quantum Information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

arxiv: v1 [cond-mat.mes-hall] 14 May 2015

Experimental Quantum Computing: A technology overview

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Supercondcting Qubits

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Strong tunable coupling between a charge and a phase qubit

ELECTRON PARAMAGNETIC RESONANCE

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

arxiv:cond-mat/ v2 10 Dec 1998

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Synthesizing arbitrary photon states in a superconducting resonator

Magnetic Resonance in magnetic materials

The First Cobalt Single-Molecule Magnet

Quantum Phase Slip Junctions

Quantum Computing with Para-hydrogen

Lecture 2: Double quantum dots

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Chapter 2 Magnetic Properties

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Magnetic Resonance Spectroscopy EPR and NMR

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics

Magnetic measurements (Pt. IV) advanced probes

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Magnetism and Magnetic Switching

Motion and motional qubit

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Voyage dans le nanomonde des aimants

What is the susceptibility?

Electron spin qubits in P donors in Silicon

Electron spins in nonmagnetic semiconductors

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Plan of the lectures

PCE STAMP. Physics & Astronomy UBC Vancouver. Pacific Institute for Theoretical Physics

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Towards quantum simulator based on nuclear spins at room temperature

Cooperative Phenomena

SUPPLEMENTARY INFORMATION

M.C. Escher. Angels and devils (detail), 1941

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015

Magnetic Resonance in Quantum

Quantum physics in quantum dots

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Disordered Solids. real crystals spin glass. glasses. Grenoble

INTRIQ. Coherent Manipulation of single nuclear spin

Superconducting Flux Qubits: The state of the field

Entangled Macroscopic Quantum States in Two Superconducting Qubits

nano Josephson junctions Quantum dynamics in

Magnetic measurements (Pt. IV) advanced probes

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Reservoir Engineering

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

An introduction to Solid State NMR and its Interactions

The Basics of Magnetic Resonance Imaging

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Cristaux dopés terres rares pour les mémoires quantiques

SUPERCONDUCTING QUANTUM BITS

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

Photon-induced magnetization changes in single-molecule magnets invited

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

1.b Bloch equations, T 1, T 2

Quantum step heights in hysteresis loops of molecular magnets

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Supplementary Information for

Quantum Information Processing with Semiconductor Quantum Dots

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

Transcription:

Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble single molecules magnets, single ions magnets Conclusion

Brief history 70 s: Search for «macroscopic quantum tunnelling» phenomena ( Schrödinger, Leggett) 1981 First evidence of MQT in J - J (R. Voss & R. Webb, IBM Yorktown-Heights) 1973-1988 Rare-earths with «narrow domain walls»: Dy 3 Al 2, SmCo 3.5 Cu 1.5 80 s-90 s T-independent relaxation Films, nanoparticles ensembles: a-smco, a-tbfe, (TbCe)Fe 2, Theory: T. Egami R. Schilling, J.L. van Hemmen, P. Stamp, E. Chudnovsky, L. Gunther, N. Prokof ev, 90 s Two directions: 1) single particule Micro-SQUIDs 2) ensembles of identical nanoparticles Single Molecules Magnets

1993-1996 1986-1995 1973-198 ingle Molecule Magnetic Protein Cluster Nanoparticle 1 nm 2 nm 3 nm 20 nm K. Ziemelis, Nature, «Milestones on Spin», S19, March 2008 (Produced by Nature Physics)

Quantum nano-magnetism Mn12 acetate (very schematic) Mn(III) S=2 Mn(IV) S=3/2 Total Spin = 10 T. Lis, Acta. Cryst. 1980

Single molecule magnets of Mn 12 -ac The molecules are regularly arranged in the crystal Macroscopic quantum magnet 1 mm From Kunio Awaga, Nagoya university

Macroscopic quantum magnet of Fe 8 1 mm From Satoru Maegawa, Kyoto university

Mn12 acetate (very schematic) Mn(III) S=2 1 M Mn(IV) S=3/2 0 H A H -1-100 0 100 Total Spin = 10

Resonant Tunneling of Magnetization (in Mn 12 -ac) Quantum tunneling and classical hysteresis NATO ASI workshop «Quantum Tunnelling of Magnetization», 1994 Grenoble (Organization: B.B., L.Gunther, N.Garcia, and A.J. Leggett). 1,0 1 M / M s Hysteresis loop 0,5 0,5 M/M S 0,0 0-0,5-1 -1,0 0.55 K 0.65 K 0.7 K 0.75 K 0.45 K 1.5K 1.6K 1.9K 2.4K -3-2 -1 0 1 2 3-5,5-5,0-4,5-4,0-3,5-3,0-2,5-2,0 H n = nd/gµ B ~ nh A /2S B L (T) B 0 (T) 0.8 K 0.85 K 0.9 K 0.95 K 1 K 1.1 K 1.3 K 1.37 K I. Chiorescu et al L. Thomas et al, Nature (1996); Friedman et al, PRL (1996). B.B. et al, JMMM (1995)

Classical barrier and tunnelling of a collective spin (S=10) 0 0 0 0 H = - DS z2 -BS z4 - gµ B S z H z -7-8 -9 Low Temperature regime ω ²M = ±1-10 10 0-1 -0.5 0 0.5 1 µ 0 H z (T) 0 - gµ B (S + + S - )H x /2 + E(S +2 + S -2 ) - C(S +4 + S -4 ) 7 8 9 Energy (K) Thermally activated reversal S, m-n > S, -m > S,-S+2> S,S-2> 1 P S,-S+1> S, -m > S,-S> spin down H z = 0 S, m-n > Ground state tunneling S Z magnetic field S,S-1> S,S> spin up S + Landau-Zener Γ 2 (TS model n /DS 2 ) 4S/n H 0 (TS n /DS H = 2 0) 2S/n, n 2S H A Probability: Resonances P LZ = 1 exp[-π( /ħ) «under 2 the /γc] barrier ~ 2 /c» 1 - P Thermally activated tunnelling ħ, v H /

Usual double-well energy barrier E = Dm 2 E(θ) with θ = Cos -1 (m/s) ; m = <S z >

Effect of long-range dipolar interactions lassical barrier E(m) = - Dm 2 E(θ) with θ = cos -1 (m/s) ; m = <S z > From «zero-kelvin» tunneling to Equilibrated superparamagnetism B n (T) 5,0 10-0 10-1 4,5 4,0 3,5 3,0 9-0 9-1 9-2 8-0 8-1 8-2 7-0 7-1 7-2 6-0 6-1 6-2 20 (n-p) : -S+p S-n-p E (K) 10 0-10 -20-30 9-2 10-1 8-2 9-1 10-0 7-2 8-1 9-0 6-2 7-1 8-0 6-1 7-0 6-0 N(E) 0,4 0,6 0,8 1,0 1,2 1,4 T(K) 3,0 3,5 4,0 4,5 5,0 B 0 (T) Local fields small shifts of spin levels Inhomogeneous distribution of states Thermally activated tunneling P ~ e B - E/kT

From a single spin to an ensemble of spins Effects of the magnetic environment (spin-bath) Long range dipolar interactions at T=0 Kelvin LZ probability: P LZ = 1 exp[-π( /ħ) 2 /γc] ~ 2 /c Spin-bath (Prokofiev & Stamp, 2000) P SB ~ ( 2 /ω 0 )e - ξ /ξ 0 n(ed ) >> P LZ energy 1/2,1/2> 1/2,-1/2> S, m-n > ² 0 S, -m > 1-P 1 - P _ hω H = 0 2 +(2µ B B 0 ) 2 ξ 0 = hyperfine tunnel window >>> T < T c 1 1 P energy 1/2,-1/2> S, -m > P 1/2,1/2> S, m-n > Non-equilibrium hole magnetic field 0,0 applied field Allows observation of mesoscopic tunnelling Strong decoherence

Fom molecules to simple paramagnetic ions Nuclear spins! Molecules of Mn 12 ac Ho 3+ ions in YLiF 4 1 1,0 M/M S M/M S 0,5 0-0,5-1 -3-2 -1 0 1 2 3 B L (T) 1.5K 1.6K 1.9K 2.4K 0,5 0,0 dh/dt=0.55 mt/s -0,5-1,0 200 mk 150 mk 50 mk 300 200-80 -40 0 40 80 120 µ 0 H z (mt) 1/µ 0 dm/dh z (1/T) n=1 dh/dt > 0 n=2 100 n=0 n=-1 n=3 0-20 0 20 40 60 80 L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, D. Gatteschi, and B. Barbara, Nature, 1996. and B. Barbara, PRL, 2001. Steps at B n = 450.n (mt) Steps at B n = 23.n (mt)

Ising CF Ground-state + Hyperfine Interactions H = H CF-Z + A{J z I z + (J + I - + J - I + )/2} The ground-state doublet 2(2 x 7/2 + 1) = 16 states E (K) -178,5-179,0-179,5 I = 7/2 5/2-180,0 3/2-7/2-200 -150-100 -50 0 50 100 150 200 µ 0 H z (mt) g J µ B H n = n.a/2-7/2-5/2 5/2 7/2 7/2 1,0 0,5 0,0-0,5-1,0 M/M S 200 mk 150 mk 50 mk 300 200-80 -40 0 40 80 120 µ 0 H z (mt) 1/µ 0 dm/dh z (1/T) A = 38.6 mk n=1 dh/dt > 0 n=2 100 n=0 n=-1 n=3 0-20 0 20 40 60 80 Avoided Level Crossings between Ψ, I z > and Ψ +, I z > if I= (I z -I z )/2= odd Co-Tunneling of electronic and nuclear momenta

1,0 0,5 E (K) 0,0-0,5 40 20 0 a) M/M S 50 mk -179,0 0.3 T/s -1,0 n -300-200 -100 0 100 200 300 µ 0 H z (mt) 60 b) 8 n = 6-179,5 n=0 1/µ 0 dm/dh z (1/T) 50 mk 200 mk 0.3 T/s -180,0 Additional steps at intermediate fields n=1 µ 0 H n (mt) 4 0 240 180 120-60 120 160 200 240-150 -75 0 75 150 225 µ 0 H z (mt) 60 0 linear fit µ 0 H n = n x 23 mt -120 integer n -180 half integer n -8-6 -4-2 0 2 4 6 8 10 n = 7 n = 8 n = 9 dh/dt<0 Giraud & B.B et al, Phys. Rev. Lett. (2001) Fast measurements (τ meas ~ τ bott > τ 1 >> τ s ) Simultaneous tunneling of Ho 3+ pairs (4-bodies tunnelling) Detailed studies in ac-susceptibility Accurate fits with spins-spins, spin-phono bottleneck, weak CF disorder (B.Malkin):

Ho: YLiF 4 Er: CaWO 4 X band spectrometer (9-10GHz) Continuous wave (CW) Time resolved (TR) or pulsed Temperature 2.5K to 300K Bruker Elexys E580 Copyright CEA-Grenoble

Calculated energy spectrum 167 Er 3+ :CaWO 4 I=7/2 7/2 5/2 3/2 1/2-1/2-3/2-5/2-7/2 φ +, m I > m J = ±1 m I =0 H c-axis -7/2-5/2-3/2-1/2 1/2 3/2 5/2 7/2 m I = ±1 φ -, m I > φ 1 > = α 13/2> + δ 11/2> + β 5/2> + γ 3/2>

CW-EPR (9.7 GHz) EPR sequence used Electro-nuclear Rabi oscillations Narrow lines t (µs) I=0 H//b Er (0.001%):CaWO 4 I=7/2 ( 167 Er) I =7/2 ( 167 Er) I=0 Excitation π/2 π Echo <S z > Pulsed EPR 9 decoupled 9 decoupled qubits, qubits, adressed adressed with with small small fields fields (large (large moments) moments) S. Bertaina, S. Gambarelli, A. Tkachuk, B. Malkin, A. Stepanov, and B.Barbara, Nature nanotechnology, (2007) A new class of spins qubits

Effect of anisotropic hyperfine interaction H c Ω R (n,m,µ)~ g J h µ <φ n S + φ m > Calculated in the electro-nuclear 128 dimension basis

Rabi frequency Ω nm measured vs microwave ac field for three different orientations Lines: Calculated Rabi frequency: Ω µ =g µ µ B h µ with g µ = g J <φ 1µ S + φ 2 µ >

Rabi oscillations on Er (0.001%):CaWO 4, H=0.522 T //c, 0.15 mt //b, at 3.5 K Ω/2π ~ ±17 MHz (halfwidth ~2 MHz ~ π/τ R ) Varie avec The phase of the wave function Ψ( t) = a( t) Φ Φ 1 + b( t) is preserved at the timescales of µs φ1 > = α 13/2> + δ 11/2> + β 5/2> + γ 3/2> φ2 > = α 13/2> δ 11/2> β 5/2> γ 3/2> 2 <S z > = S 0 e -t/τ R sin(ωt/2) τ R = 0.2 µs << τ 2 ~ 7µs

Effect of the microwave power (0.05% Er:CaWO 4 ) h ac = 0.6 mt h ac =0.05mT The damping rate decreases with concentration and power Spin-bath decoherence Stochastic noise, interferences

The damping rate scales with the Rabi frequency Decoherence in spin + electromagnetic baths Stamp and Prokof ev Spin-bath Stochastic noise, interferences 1/τ R = 1/τ 2 g(ω R τ 2 ) 1/τ 2

Coherence times τ 2 vs T «Pairwise decoherence» T cosh 2 Gd 3+ T 2 = 1ms, 4K

Coherent multilevel manipulations in Gd:CaWO 4 2 close transtions: 1 st excite and 2 nd probe ν 1 ν 2 ν 2 τ 2 1ms at 4K ν 2 3 2 10 ms at 80 K ν 1 1

From ions to molecules Molecular and supramolecular chemistry Achim Müller (Bielfeld)

V ( H ) [ ] IV III 6 V As O 15 15 6 42 2O S=1/2 Huge Hibert space! D H = 2 15 6 nm

( ) ( ) = = = < = + + + = 3 1 3 1 12,13,31 3 1, 0 i i B i j i ij j i ij j i j i j i g A J H S H S I S S D S S µ Complex Hamiltoninan

Well separated molecules Random orientation {( CH 2 ) 17 Me} N CH 3 CH 3 H 3 C N CH 3 V 15 H 3 C N H 3 C + H 3 C N H 3 C CH 3 N CH 3 H 3 C CH 3 N H 3 C H 3 C N {( CH 2 ) 17 Me} DODA + ~ 13 nm Surfactants DODA = Me 2 N{(CH2)17Me} 2 + Embedding material for anionic clusters

First Rabi Oscillations in a Molecular Magnet Doublets Entanglement of 15 spins with photons Quartet D H = 2 15 Factor of merit ~ 1 See also: P. Stamp, Nature News & Views May 2008 R. Winpenny, Angew. Chem. Highlights Sept. 2008 Ardavan et al, PRL (2007) Factor of merit ~ 10 S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, & B. Barbara

T 2 = 1 tanh Inter-molecular décohérence (V 15 ) / kt 2 P. Stamp et al PRL, 2006 Pairwise decoherence i j Ai, j 2 100 µs Well separated molecules! Protons 4π = 18 s ~ 9 µs E T2 µ 2 CW-EPR ( 1 H, 75 As, 51 V) First time that decoherence can be explained quantitatively (Any system!) Intra-molecular decoherence Nuclear spins ( 1 H, 75 As, 51 V) W ~ 34 mt 4π E= W/2 ~17 mk T2 = 2 1µ s E Main decoherence: Nuclear Spins of V 15

CONCLUSION Entanglement of photons with a complex molecule with huge Hilbert space Self-organized 2D supra-molecular depositions become possible From: I. Chiorescu, Y. Nakamura, K. Hartmans, H. Mooij et al, Delft University of Technology M. Ruben, J. V. Barth et. al., INT Karlsruhe, TU Munich 100 µs expected

Collaborations Quantum coherence (rare-earth ions, V 15 ) S. Bertaina (Grenoble,Tallahassee), S. Gambarelli (Grenoble), A. Stepanov (Marseille), B. Malkin (Kazan), A.M. Tkachuk (St. Petersbourg). A. Müller and his group (Bielefeld). Thank You!! Quantum relaxation (initial studies in Mn 12 -ac, rare-earth ions) L. Thomas (IBM-Almaden), Chiorescu (Tallahassee), W. Wernsdorfer (Grenoble) R. Giraud (LPN-Marcoussis), D. Gatteschi and his group (Florence).