State of the art cold atom gyroscope without dead times

Similar documents
Cold atom gyroscope with 1 nrad.s -1 rotation stability

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Cold atom interferometers for inertial measurements. Arnaud Landragin

Towards compact transportable atom-interferometric inertial sensors

Point source atom interferometry with a cloud of finite size

Absolute gravity measurements with a cold atom gravimeter

Characterization and limits of a cold atom Sagnac interferometer

Travaux en gravimétrie au SYRTE

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Advanced accelerometer/gradiometer concepts based on atom interferometry

Gravitational tests using simultaneous atom interferometers

Atom interferometry in microgravity: the ICE project

Atom interferometry applications in gravimetry

Precision atom interferometry in a 10 meter tower

Atom Interferometry II. F. Pereira Dos Santos

Atomic Quantum Sensors and Fundamental Tests

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Fundamental Physics with Atomic Interferometry

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

arxiv: v1 [physics.atom-ph] 19 Jun 2014

Lecture 2:Matter. Wave Interferometry

arxiv: v1 [physics.atom-ph] 31 Aug 2008

Status of the ACES/PHARAO mission

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Dr. Jean Lautier-Gaud October, 14 th 2016

arxiv: v1 [physics.atom-ph] 17 Dec 2015

Atom Quantum Sensors on ground and in space

Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors

Compensation of gravity gradients and rotations in precision atom interferometry

Recent Advances in High Resolution Rotation Sensing

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Detecting inertial effects with airborne matter-wave interferometry

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Progress on Atom Interferometer (AI) in BUAA

arxiv: v3 [physics.atom-ph] 16 Oct 2015

arxiv: v2 [gr-qc] 6 Jan 2009

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

Large Momentum Beamsplitter using Bloch Oscillations

Atom Interferometry I. F. Pereira Dos Santos

Forca-G: A trapped atom interferometer for the measurement of short range forces

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Gravity measurements below 10 9 g with a transportable absolute quantum gravimeter

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

arxiv: v1 [physics.ins-det] 25 May 2017

Control of the Laser Interferometer Space Antenna

TOBA: Torsion-Bar Antenna

arxiv: v1 [physics.atom-ph] 17 Jan 2017

The Fiber Optic Gyroscope a SAGNAC Interferometer for Inertial Sensor Applications

High Accuracy Strontium Ion Optical Clock

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Principes pour le fonctionnement des capteurs quantiques interféromètres et horloges. A. Landragin

Cold Atom Clocks on Earth and in Space Fundamental Tests and Applications. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Comparison of 3 absolute gravimeters based on different methods for the e-mass project

Navigation, Gravitation and Cosmology with Cold Atom Sensors

Optical Lattice Clock with Neutral Mercury

Atomic-Photonic Integration (A-PhI) A-Φ Proposers Day

New Searches for Subgravitational Forces

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

June 16, 2016 Crown copyright 2015 Dstl

Using Ring Laser Systems to Measure Gravitomagnetic Effects on Earth

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

arxiv: v1 [physics.atom-ph] 30 May 2017

Fringe-locking method for the weak equivalence principle test by simultaneous dual-species atom interferometers

Gottfried Wilhelm Leibniz Universität Hannover

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Atom-based Frequency Metrology: Real World Applications

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Bayesian Statistics to calibrate the LISA Pathfinder experiment

RACE: Rubidium Atomic Clock Experiment

Experimental tests of gravitation at small and large scale (in the solar system) Peter Wolf

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Tests of fundamental physics using atom interferometry

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Pioneer anomaly: Implications for LISA?

Atom Interferometry Measurements of Atomic Polarizabilities and Tune-out Wavelengths

The preliminary analysis of Tianqin mission and developments of key technologies

Ion trap quantum processor

Testing Lorentz Invariance using Zeeman Transitions in Atomic Fountains

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

QND for advanced GW detectors

Does an atom interferometer test the gravitational redshift at the Compton frequency?

Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

arxiv: v1 [physics.atom-ph] 7 Dec 2018

arxiv: v1 [physics.atom-ph] 26 Feb 2014

Matter wave interferometry beyond classical limits

A Guide to Experiments in Quantum Optics

Transcription:

State of the art cold atom gyroscope without dead times Remi Geiger SYRTE, Observatoire de Paris GDR IQFA Telecom Paris November 18 th, 2016 I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger and A. Landragin Phys. Rev. Lett. 116, 183003 (2016)

Outline Motivations for high precision inertial sensors (brief) The cold atom gyroscope experiment at SYRTE Dead times in quantum sensors Gyroscope stability Reaching the quantum noise limit In this talk, I will illustrate the potential of quantum sensors and key techniques for future sensor architectures. 2

Applications of cold atom inertial sensors Inertial navigation : onboard accelerometers or gyroscopes Geosciences: monitoring global phenomena (e.g. Ω Earth (t), g(t)) Fundamental physics (e.g. test of the equivalence principle) Low frequency gravitational wave detection (< 10 Hz) Fang et al, arxiv:1601.06082 Freier et al, arxiv:1512.05660 Dimopoulos et al, PRD (2008) Chaibi et al, 2016 PRD (2016) Canuel et al, PRL (2006) Geiger et al, Nature Comm. (2011) Zhou et al, PRL (2015) Aguilera, CQG (2014) 3

Outline Motivations for high precision inertial sensors (brief) The cold atom gyroscope experiment at SYRTE Dead times in quantum sensors Gyroscope stability Reaching the quantum noise limit 4

4-light pulse atom interferometer B. Canuel et al., PRL 97, 010402 (2006) 5

4-light pulse gyroscope 6

Sensitivity of the gyroscope 800 ms interrogation time 11 cm 2 Sagnac area 1 rad. s 1 rotation signal 5 10 6 rad phase shift in the AI! 7

The SYRTE cold atom gyroscope 4 10 7 Cs atoms @ 1.2 µk launched vertically at 5 m. s 1 Vibration isolation (> 0.4 Hz) Relative alignement of the beams @ 5 µrad Ability to measure without dead times. I. Dutta, PhD Thesis 8

Outline Motivations for high precision inertial sensors (brief) The cold atom gyroscope experiment at SYRTE Dead times in quantum sensors Gyroscope stability Reaching the quantum noise limit 9

Dead times in quantum sensors Sequential operation of cold atom interferometers Cycle time T c Cooling AI Detection Cooling AI Detection Dead time T D What we know from clocks: Dead times local oscillator noise aliasing (Dick effect) need better oscillator Same in cold atom inertial sensors need better inertial reference 10

Dead times : a problem in many applications 1. Inertial navigation Dead times loss of information navigation error (Jekeli, 2005) 2. Geosciences Dead times loss of information for rapidly varying signals e.g. Problem for rotational seismology (Schreiber et al, Rev. Sci. Inst. 2013 ) 3. Gravitational wave detection Sequential operation with dead times noise aliasing problem for GW detection in the 1 10 Hz frequency band Dead times prevent from benefiting from the full potential of AIs. 11

Continuous (zero dead time) sensor Joint interrogation scheme: prepare the cold atoms and operate the AI in parallel Meunier and Dutta et al. PRA 90, 063633 (2014) 12

Outline Motivations for high precision inertial sensors (brief) The cold atom gyroscope experiment at SYRTE Dead times in quantum sensors Gyroscope stability Reaching the quantum noise limit 13

Vibrations Very sensitive interferometer very sensitive to vibration noise fundamental problem (comes from the Equivalence Principle) it is possible to reduce it in some applications (differential measurements) but not in others (accelerometers, gyroscopes) In our atom interferometer with 800 ms interrogation time: Sensitivity to AC accelerations (around few Hz): 1 m. s 2 1 10 6 rad phase fluctuations Sensitivity to rotations: 1 rad. s 1 5 10 6 rad fluctuations Need to handle this problem seriously 14

Rejection of vibration noise Accelerometer data Sensitivity function Computed phase Mechanical accelerometers correlate AI output Sensor hybridization pioneered at SYRTE : Merlet et al., Metrologia 46, 87 94 (2009) Vibration isolation platform 15

Rejection of vibration noise Correlation of the AI with the mechanical accelerometers: SNR limited by detection noise 16

Rotation rate measurement 1. Divide the data set in packets of 20 points and fit offset phase 17

Rotation rate measurement 1. Divide the data set in packets of 20 points and fit 2. Remove contributions from the light shifts by alternating ±k eff Rotation signal δω stability? 18

Gyroscope Stability Short term: 100 nrad. s 1 / Hz (limited by detection noise) Long term: 1 nrad. s 1 > 20-fold improvement compared to previous results Gauguet et al, PRA 2009 Berg et al, PRL 2015

Improved stability 1. Real-time compensation of vibration Phase jump applied on the Raman laser phase just before the last pulse 2. Midfringe Lock Operate at best sensitivity Hybrid gravimeter: Lautier et al, Applied Phys. Lett. 105 144102 (2014) 20

Improved stability (July 2016) Fringe fit Real-time compensation and mid-fringe lock 0.5 nrad.s -1 stability as of July 2016 21

Outline Motivations for high precision inertial sensors (brief) The cold atom gyroscope experiment at SYRTE Dead times in quantum sensors Gyroscope stability Reaching the quantum noise limit 22

Vibration noise aliasing Very sensitive interferometer more sensitive to vibrations we would prefer to be quantum noise limited Try to find a way to average faster the vibration noise Correlate successive measurements to change the noise scaling: σ τ 1/ τ σ τ 1/τ 23

Efficient averaging of the noise What we would like looks like that: 24

Efficient noise averaging Proof of principle with a 2-light pulse interferometer Classical Trajectory 4 Pulse 2 Pulse Gryoscope Fountain Clock H 2 Ω Ω = θ 4 θ 1 2T f = Φ 2 Φ 1 2πT H 1 Inertial Noise in Gyro = Local Oscillator Noise in Clock θ 1 Counter-propagating pulses θ 4 Φ 2 Φ 1 Co-propagating pulses

Efficient noise averaging Normal Joint Detection noise Meunier and Dutta et al. PRA 90, 063633 (2014) Similar 1/τ scaling observed for interleaved clocks (2 different clocks) : Biedermann et al, PRL (2013) 26

Mutliple joint sequence Several proposals for future atom interferometry sensors assume interleaved samples (e.g. space based gradiometers, GW detectors) Up to 5 clouds in the interferometer region 800 ms interrogation time with 5 Hz cycling frequency combine high sensitivity and high bandwith. Meunier and Dutta et al. Phys. Rev. A 90, 063633 (2014) 27

Conclusion Several applications of cold atom interferometers Dead times in cold atom sensors strongly limit their potential impact First demonstration of a continuous (no dead time) cold atom inertial sensor State of the art of cold atom gyroscopes: 0.5 nrad. s 1 rotation stability (at 10 4 s) Towards quantum-limited sensitivity using the joint interrogation technique with 10 6 atoms, contrast of 20 % : expected sensitivity < 10 10 rad. s 1 in 100 s. 28

The gyroscope team R. Geiger A. Landragin B. Fang D. Savoie N. Mielec Carlos Garrido Alzar Bess Fang R. Sapam I. Dutta IACI team of SYRTE, Jan. 2015

Thank you for your attention!