Diffuse axion-like particle searches

Similar documents
Diffuse axion-like particle searches

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Jun. Prof. Dr. Alessandro MIRIZZI (Universität Hamburg)

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

SENSITIVITY OF THE CHERENKOV TELESCOPE ARRAY TO THE DETECTION OF AXION-LIKE PARTICLES

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

An Auger Observatory View of Centaurus A

Particle Physics Beyond Laboratory Energies

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Cosmology and fundamental physics with extragalactic TeV γ-rays?

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Stochastic conversions of TeV photons into axionlike particles in extragalactic magnetic fields

Neutrino Astronomy. Ph 135 Scott Wilbur

Ultra- high energy cosmic rays

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Understanding High Energy Neutrinos

Neutrino Astronomy fast-forward

TeV Astrophysics in the extp era

Indirect dark matter searches with the Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA)

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Two new avenues in dark matter indirect detection

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector

Measurement of the CR e+/e- ratio with ground-based instruments

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

HAWC and the cosmic ray quest

TeV to PeV Gamma-ray Astronomy with TAIGA

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Testing a DM explanation of the positron excess with the Inverse Compton scattering

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Cosmic Ray Astronomy. Qingling Ni

Axions and X-ray astronomy

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Galactic diffuse neutrino component in the astrophysical excess measured by the IceCube experiment

IceCube Results & PINGU Perspectives

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

IceCube: Dawn of Multi-Messenger Astronomy

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

High Energy Emission. Brenda Dingus, LANL HAWC

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

The new Siderius Nuncius: Astronomy without light

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Neutrino Radiography of the Earth with the IceCube Neutrino Observatory

The High-Energy Interstellar Medium

arxiv: v2 [astro-ph.he] 30 May 2014

SEARCH FOR AXION- LIKE PARTICLE SIGNATURES IN GAMMA-RAY DATA

The Cherenkov Telescope Array. Kevin Meagher Georgia Institute of Technology

Gamma-Ray Astronomy from the Ground

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

NEUTRINO ASTRONOMY AT THE SOUTH POLE

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

Matt Kistler Ohio State University In collaboration with John Beacom

Gamma-ray Astrophysics

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

How many stars have been shining in the Universe? Answer can be given by very-high energy gamma-ray observations! [Robertson et al.

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Very High-Energy Gamma- Ray Astrophysics

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

TeV Future: APS White Paper

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

Cosmic ray electrons from here and there (the Galactic scale)

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Signal Model vs. Observed γ-ray Sky

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

High Energy Neutrino Astronomy

The Cherenkov Telescope Array

VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT

ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Investigation of Obscured Flat Spectrum Radio AGN with the IceCube Neutrino Observatory

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Possible Interpretations of IceCube High Energy Neutrinos

First Light with the HAWC Gamma-Ray Observatory

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

The Characterization of the Gamma-Ray Excess from the Central Milky Way

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

Extragalactic Science with the CTA. A. Zech, LUTH

LATTES Large Array Telescope to Tracking Energetic Sources

neutrino astronomy francis halzen university of wisconsin

Extreme high-energy variability of Markarian 421

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Catching Neutrinos with an IceCube

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

Neutrino induced muons

Ultrahigh Energy Cosmic Rays propagation II

A Large High Altitude Air Shower Observatory : the LHAASO Project

High Energy Neutrino Astrophysics Latest results and future prospects

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO

Transcription:

Diffuse axion-like particle searches 180 180 90 Galactic PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics Johannes Gutenberg-Universität Mainz Thanks to my collaborators: Hendrik Vogel and Manuel Meyer arxiv: 1712.01839

Contents Motivation IceCube observations Methodology Results

Motivation

a<latexit sha1_base64="jwykqhma47olekx47mno7jhh+ac=">aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rtqwks5idzczdzmewmv4hlpkelx4u8eoxefnvndwqtsxokkq66e6kuiks+v6xv1hzxvvfkg6wtrz3dvfk+wdnqzpdeinpqu0ropzloxgdburesg2nsst5qzs8nvgpj9xyodu9jliejrsvrcwyrsfdeuq65ypf9acgpyryjbwyo94tf3z6mmujv8gktbyd+cmgotuomotjuiezpkvsspu87aiicbdhpj11te6c0ioxnq4ukqn6eyknibwjjhkdccwbxfqm4n9eo8p4msyfsjpkis0wxzkkqmnkb9ithjoui0com8ldstiagsrqpvnyisy9veyaz9xarwa355xa1tyoihzbmzxcabdqgxuoqwmy9oejxudvk96z9+a9z1ol3nzmep7a+/ggcewnog==</latexit> <latexit sha1_base64="jwykqhma47olekx47mno7jhh+ac=">aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rtqwks5idzczdzmewmv4hlpkelx4u8eoxefnvndwqtsxokkq66e6kuiks+v6xv1hzxvvfkg6wtrz3dvfk+wdnqzpdeinpqu0ropzloxgdburesg2nsst5qzs8nvgpj9xyodu9jliejrsvrcwyrsfdeuq65ypf9acgpyryjbwyo94tf3z6mmujv8gktbyd+cmgotuomotjuiezpkvsspu87aiicbdhpj11te6c0ioxnq4ukqn6eyknibwjjhkdccwbxfqm4n9eo8p4msyfsjpkis0wxzkkqmnkb9ithjoui0com8ldstiagsrqpvnyisy9veyaz9xarwa355xa1tyoihzbmzxcabdqgxuoqwmy9oejxudvk96z9+a9z1ol3nzmep7a+/ggcewnog==</latexit> <latexit sha1_base64="jwykqhma47olekx47mno7jhh+ac=">aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rtqwks5idzczdzmewmv4hlpkelx4u8eoxefnvndwqtsxokkq66e6kuiks+v6xv1hzxvvfkg6wtrz3dvfk+wdnqzpdeinpqu0ropzloxgdburesg2nsst5qzs8nvgpj9xyodu9jliejrsvrcwyrsfdeuq65ypf9acgpyryjbwyo94tf3z6mmujv8gktbyd+cmgotuomotjuiezpkvsspu87aiicbdhpj11te6c0ioxnq4ukqn6eyknibwjjhkdccwbxfqm4n9eo8p4msyfsjpkis0wxzkkqmnkb9ithjoui0com8ldstiagsrqpvnyisy9veyaz9xarwa355xa1tyoihzbmzxcabdqgxuoqwmy9oejxudvk96z9+a9z1ol3nzmep7a+/ggcewnog==</latexit> <latexit sha1_base64="jwykqhma47olekx47mno7jhh+ac=">aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rtqwks5idzczdzmewmv4hlpkelx4u8eoxefnvndwqtsxokkq66e6kuiks+v6xv1hzxvvfkg6wtrz3dvfk+wdnqzpdeinpqu0ropzloxgdburesg2nsst5qzs8nvgpj9xyodu9jliejrsvrcwyrsfdeuq65ypf9acgpyryjbwyo94tf3z6mmujv8gktbyd+cmgotuomotjuiezpkvsspu87aiicbdhpj11te6c0ioxnq4ukqn6eyknibwjjhkdccwbxfqm4n9eo8p4msyfsjpkis0wxzkkqmnkb9ithjoui0com8ldstiagsrqpvnyisy9veyaz9xarwa355xa1tyoihzbmzxcabdqgxuoqwmy9oejxudvk96z9+a9z1ol3nzmep7a+/ggcewnog==</latexit> Possible dark matter masses ~ 10-22 ev What is the dark matter particle mass? ~ 100 M Important to search the full mass range --- a comprehensive search is required to understand new physics We know the dark matter density Dark matter particle density varies by a large amount in the entire mass range Search techniques depend on the mass range considered I will consider a light mass particle: axion-like particle, See talks by Pradler, Kopp, Redondo I will consider some astrophysical techniques to constrain these particles Other papers: Bar etal. 1805.00122 for connection to rotation curves; Brdar etal. 1705.09455 for connection to neutrinos

Axion-like particles (ALPs) ga a F µ F µ = ga a E B 4 Lint = <latexit sha1_base64="oml7lbk3ytv0mbv6r0yj9eegveq=">aaacbnicbvfdaxqxfm2mvdv1a6vqb4syxiq+6dijbx0plirfhz604lafztrcyws2oulmso4is5hh/6bv/gzf/almptvsdy8knhvuptfjsv4r6tbjfkfxvzx7dx6urg0epx7y9nlw/fmxqxrlxyrxqrknotihpbetlkjeaw0f6fyjk/z8c1c/+sgsk5x5hotazdtmjswlbwxunvzjnoazb+up2swzq6k02nid+p6yorta/tzzwoagnbst324pe0eh2/a/e6ybykztcwylkotf76zc0jv0mvhkyplsfwkplyrsk702g46scdihvqvsjrirzrxmw1+sqhijhuguwllpmtq482brcixaawucqigfw1xmazsghzv53q6wvg1mqcvkhmwq9ux1hqft3elnobmzx92udet/atmgy08zl03dodd84qcyurqr2nlpc2kfr7uialiv4a6un0ewgcmpdyij6e0n3wxhh8zpmk6ptke7e0s7vskmeuo2seo+kl3ylryscehkt7qevyw2o7/xrvwqfn3rgkdlzqtyi+ktfzyiuay=</latexit> Mediates photon ALP oscillations (ALP) Pa / (ga BT `)2 Oscillation probability <latexit sha1_base64="vvvhz7ny5ehtoqbsbeuy5wzuukg=">aaachxicbvdlsgmxfm3uv62vqks3wsjukdjtcrosdeoyql/qqcodng1dk5khyqhl6i+48vfcufdehrvxb8y0xdjwa5d7oodeknv8idolbfvhymxsbm3vzhdze/shh0f545owcmnjajoepjqdhxtllkbnztsnnuhsed6nbx98m/rtryovc4ognks0j2aysaejoi3k5st1lwhsdkeimgi3kmgkq1wclqlxuoy10uzszi8fyl6+yjfsgfa6crakgbaoe/kvtx+swnbaew5kdr070r0epgae02nojrwngixhslugbico6iwz66b4wih9pailqudjmfp3iwgh1et4zlkahqlvlxx/87qxhtz0ehzesaybmt80idk2aarr4t6tlgg+mqsizoavmixaatem0jwjwvk9ez20yixhljn3luk1togji87qosoib12jkrpdddrebd2hf/sg3q1n69x6sd7noxlrsxoklmb9/wjcpkax</latexit> Laboratory searches: large BT, small ` Courtesy: Hendrik Vogel <latexit sha1_base64="8u+bhw55cb9fq8efs6ytgl0lvse=">aaab63icbva9swnbej2lxzf+rs1tfongfe5eukwcnpyrtawkr9jbtjilu3vh7p4qjvwfgwtfbp1ddv4b95irnphbwoo9gwbmryngxvr+t1daw9/y3cpvv3z29/ypqodhbronmmglxslwnygaffxhy3irsjnopdis+bhnbnp/8qm14bf6snmeq0lhig85ozaxeihev1rz6/4czjuebalbgwa/+tubxcyvqcwt1jhu4cc2zki2namcvxqpwysycr1h11ffjzowm986i2dogzbhrf0ps+bq74mmsmommnkdktqxwfzy8t+vm9rhdzhxlaqwfvssgqac2jjkj5mb18ismdpcmebuvslgvfnmxtwvf0kw/piqav/ua78e3f/wgjdfhgu4gvm4hwcuoaf30iqwmbjdm7zcmye9f+/d+1i0lrxi5hj+wpv8aqr+jjm=</latexit> <latexit <latexit sha1_base64="asjgvqjtvsqmvz5wnz2a8x+ankc=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0leudwvvxis2c9oq9lsj+3szsbsboqs+ho8efdeq7/im//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx3cxvp6hspjynm0nqj+hq8pazaqz0entv9msvt+roqvajl5mk5kj3y1+9qczsckvhgmrd9dze+blvhjob01iv1zhqnqzd7foqaytaz+antsmzvqykjjutachc/t2r0ujrsrtyzoiakv72zuj/xjc14bwfczmkbivblaptquxmzn+tavfijjhyqpni9lbcrlrrzmw6jruct/zykmldvd236j1cvmo3erxfoiftoacprqag91chjjaywjo8wpsjnbfn3flytbacfoyy/sd5/ahsay2f</latexit> PHOTON-AXION/ALP MIXING IN A COHERENT MAGNETIC FIELD a Astrophysical searches: ɣ small BT, large <latexit sha1_base64="asjgvqjtvsqmvz5wnz2a8x+ankc=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0leudwvvxis2c9oq9lsj+3szsbsboqs+ho8efdeq7/im//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx3cxvp6hspjynm0nqj+hq8pazaqz0entv9msvt+roqvajl5mk5kj3y1+9qczsckvhgmrd9dze+blvhjob01iv1zhqnqzd7foqaytaz+antsmzvqykjjutachc/t2r0ujrsrtyzoiakv72zuj/xjc14bwfczmkbivblaptquxmzn+tavfijjhyqpni9lbcrlrrzmw6jruct/zykmldvd236j1cvmo3erxfoiftoacprqag91chjjaywjo8wpsjnbfn3flytbacfoyy/sd5/ahsay2f</latexit> Milky Way: X ` B 1 <latexit sha1_base64="lbhkptqpzyrfvutw3eajeymcu1o=">aaacbxicbvdlsgmxfm3uv62vuze6cbbbhzyzfrrxrre6rgaf0blkjk3b0cqtkoxyhm7c+ctuxcji1n9w59+ytrpq1gmxdufcy733rjjrbtzv28nnzs8sluwxcyura+sb7uzwtcejwqskyxarroq0yvsqqqggkyzubpgikxruvxr59xuini3fnrlienlufbrdmtjwarm7lzbauqr4afrwcj7a4ddgsroodq+hlbfolbwx4czxm1iegsot9ytoxzjhrbjmknzn35mmtjeyfdmylasjjhlhpuqspquccalddpzfeo5bpq07sbildbyrvydsxlue8mh2cmr6etobif95zcr0zsoucpkyivbkusdh0mrwfalsu0wwyqnlefbu3gpxdymejq2uyepwp1+ejbxjku+v/nvtyvkiiympdsaeoaa+oanlcamqoaoweatp4bw8ou/oi/pufexac042sw3+wpn8avjfloq=</latexit> <latexit sha1_base64="vkooulweizpr/0jhcxkidqwycjw=">aaaccnicbzdlssnafiyn9vbrlerszwgrxehjrnbl0y3lcvyctsit6uk7dcyjmxolhk7d+cpuxcji1idw59s4abpq1h8gpv5zdmfohyscke0431zpaxllda28xtny3nresxf3wipojyumjxksowfrwfketc00h04igyiaqzsyxef19j1ixeloto8t8auzrcxklghj9exddzjhhgelfbpyo8wzjwuo4shnuuinpbvq1jyp8ck4bvrroubp/vl6mu0frjpyoltxdrltz0rqrjlmkl6qicf0rabqnrgracrppqdm8lfx+jimpxmrxlp390rghfjjezhoqfrqzddy879an9xhpz+xkek1rhs2kew51jhoc8f9jofqpjzaqgtmr5goisrum/qqjgr3/urfaj3vxkfm3p5x61dfhgv0gi7qcxlrbaqjg9ratutri3pgr+jnerjerhfry9zasoqzffrh1ucpaq2zbq==</latexit> <latexit sha1_base64="8u+bhw55cb9fq8efs6ytgl0lvse=">aaab63icbva9swnbej2lxzf+rs1tfongfe5eukwcnpyrtawkr9jbtjilu3vh7p4qjvwfgwtfbp1ddv4b95irnphbwoo9gwbmryngxvr+t1daw9/y3cpvv3z29/ypqodhbronmmglxslwnygaffxhy3irsjnopdis+bhnbnp/8qm14bf6snmeq0lhig85ozaxeihev1rz6/4czjuebalbgwa/+tubxcyvqcwt1jhu4cc2zki2namcvxqpwysycr1h11ffjzowm986i2dogzbhrf0ps+bq74mmsmommnkdktqxwfzy8t+vm9rhdzhxlaqwfvssgqac2jjkj5mb18ismdpcmebuvslgvfnmxtwvf0kw/piqav/ua78e3f/wgjdfhgu4gvm4hwcuoaf30iqwmbjdm7zcmye9f+/d+1i0lrxi5hj+wpv8aqr+jjm=</latexit> <latexit 3 µg `. few kpc Galaxy clusters: B 1 µg <latexit sha1_base64="9muvjuu/epclm95arifdltacm4y=">aaacaxicbvdlssnafj3uv62vqbvbzwarxehjrfbcfv3osoj9qbpkzdpph84jzezeeurgx3hjqhg3/ou7/8zpm4w2hrhwoode7r0nshjvxvo+nclc4tlysng1tla+sbnlbu80tewvjnusmvstcgncqcb1qw0jruqrxcngmthgauw374nsvio7m0xiyffp0jhizkzucfcuyycsrmkh6mpgoobpfigor0cdt+xvvangppfzugy5ah33k+hknhiidgzi67bvjsbmkdiumziqbakmccid1cntswxirifz5imrplrkf8zs2rigtttfexniwg95zds5mn09643f/7x2aulzmkmisq0reloothk0eo7jgf2qcdzsaancitpbie4jhbcxozvscp7sy/okcvlxvyp/e1quxurxfme+oabhwadnoapuqa3uaqap4bm8gjfnyxlx3p2pawvbywd2wr84nz+zu5w8</latexit> ` 10 kpc <latexit sha1_base64="wnjrqetutmnb2opgl/whwexovfw=">aaacb3icbvdlsgmxfm3uv62vuzecbivgqsqmclosunfzwt6gm5rmmrahezfkxdj058zfcencebf+gjv/xrsdhbyeujfdofes3jmoro0ngm+vsls8srpwxc9tbg5t7/i7ew0ju41jhusmdstbhjaqsn1sy0hlayj4wkgzgv5p/oy90yzkcwdhisqc9qxtuyyskzr+yuqygxfsssshgj3cmha9izshq4xhhb8cviip4cijc1igowod/yvqspxyiixmyjh2gcgbz0hbihkzl6lueixwepvj21gbodfxnr1jdi+d0ou9qv0jc6fq740mcwngphgthnmbmfcm4n9eo7w9yzijqqwwcdx7qjcyacwchak7vbns2cgrhdv1f4v4gdtc1kvxcige8ycvkszzjqwq4e15uxqvx1eeb+ainiaqxiaquae1uacypijn8arevcfvxxv3pmajbs/f2qd/4h3+alahl+g=</latexit> Intergalactic magnetic field: Meyer Patras 2016 Talk B < 1 ng ` few Mpc <latexit sha1_base64="izdjqdcsvyotctmeshkehssa+ni=">aaab/nicbvdlssnafl3xwesrkq7cdbbbhzrebf24khwhywr2au0ok+mkhtqzhjmjuelbx3hjqhg3foc7/8zjm4w2hrixwzn3mndokhcmton8w0vlk6tr66wn8ubw9s6uvbffuneqcw2smmeye2bforo0qznmtjniiqoa03ywusn99iovisxiqy8t6kd4ifjicnzg6tmhdxsnvdpk5i3zzite7qt17iptdazai8qtsauknhr2l9epsrproqnhsnvdj9f+hqvmhnnj2usvttaz4qhtgipwrjwftc+foboj9feys1nco6n6eypdkvljkdctedzdne/l4n9en9xhlz8xkasacjj7kew50jhks0b9jinrfgwijpkzwxezyomjnomvtqju/jcxseu86jpv9/6iuqsxcztgci7hffy4hbrcqqoaqccdz3ifn+vjerhery/z6jjv7bzah1ifpx4fkwq=</latexit> <latexit sha1_base64="4s08xaxk63tya3jf4xoi4lrpleo=">aaaccxicbzdlsgmxfiyzxmu9jbp0eyyccykziuiy6manumfeofnkjj3thiyzicmozejwja/ixouibn0dd76natslbf0h8pgfczg5fyg508bzvp2fxaxlldxcwnf9y3nr293zreskvrrqnogjaozea2cx1awzhjpsarehh0y4ubzxg3egneviwzou0bakf7oiuwks1xfxajzjgeipkgcchgebejice4v4wtir7rglr+xnhofbz6geclu77lfqtwgqidaue61bvidnoypkmmphvaxsdzlqaelby2jmboh2nrlkha+t08vrouyldz64vycyirqeitb2cml6ery2nv+rtvitnbczfsvuqeyni6kuy5pgcsy4yxrqw4cwcfxm/hxtplgeghte0ybgz548d/wtsu+v/zvtuuuij6oa9teboki+okmvdiwqqiyoektp6bw9ou/oi/pufexbf5x8zg/9kfp5a3iwmn8=</latexit> 2

Gamma-ray opacity Image credit: Daniel Lopez/IAC Gamma-ray astrophysical source Credit: ESA/Hubble exp CMB Image credit: Hendrik Vogel Image credit: Wikipedia Vernetto & Lipari 1608.01587 Esmaili & Serpcio 1505.06486

Light shining through the Universe Light shining through the wall Credit: Hendrik Vogel Extra-galactic background light/ CMB/ Image credits: Daniel Lopez/IAC The magnetic fields and photon density that can be used: astrophysical source, source galaxy, host cluster, intergalactic space, Milky Way Depending on the ALP parameters, the maximum ALP happen for any of these choices photon conversion can

Opacity of the Universe De Angelis, Galanti, Roncadelli (2013) De Angelis, Galanti, Roncadelli (2013) Maximum absorption Maximum absorption Source redshifts z s at which the optical depth takes fixed value as a function of the photon energy E 0 Mean free path of gamma-ray photons Maximum absorption at PeV => most efficient search will be carried at around that energy Mean free path at ~ PeV energies 10 kpc. Extragalactic sources are at distances Mpc or much greater => a signal of ALP at these energies cannot be mimicked by astrophysics

Existing searches with gamma-rays (a) Search for spectral features: Majumdar, Calore, and Horns JCAP 1804 (2018) no.04, 048 (b) Search for anomalous transparency: Excess photons from a source above standard expectations Galanti and Roncadelli 1805.12055 Most sensitive to energies above ~ 500 GeV Oscillations in the photon spectrum of astrophysical objects No conclusive evidence of spectral distortion due to ALPs has been found See also Wouters and Brun, Liang etal., Xia etal., Malyshev etal., Fermi-LAT, H.E.S.S., and many others See also Meyer and Conrad, H.E.S.S., and many others (c) Search from a supernova: Strong limits from SN 1987A Next Galactic supernova holds great promise See also Payez etal., Brockway etal., Grifols etal., and many others Meyer etal., Phys.Rev.Lett. 118 (2017) no.1, 011103

Parameter space for ALPs CAST 1705.02290 Meyer 1611.07784 Malyshev etal., 1805.04388 Many different ways to search for ALPs in astrophysical systems Can we make progress in the unconstrained regions? Can we devise a new search strategy? Can we search for ALPs in the energy range where photons are maximally absorbed?

Motivation from IceCube: a new source of high-energy photons

IceCube neutrino telescope designed to detect astrophysical neutrinos Gigaton effective volume neutrino detector at South Pole 5160 Digital Optical Modules distributed over 86 strings Completed in Dec 2010; data in full configuration from May 2011 Data acquired during construction phase is analyzed Neutrino detected through Cherenkov light emission from charged particles produced due to neutrino CC/NC interactions Credit: Carsten Rott

IceCube data See the talks by Kopper, Horiuchi, and Coniglione 1510.05223 Diffuse and isotropic spectrum of neutrinos Time-independent Courtesy: IceCube Latest update in the Neutrino 2018 conference Strong evidence of these neutrinos being extragalactic Clear evidence of the astrophysical nature of these neutrinos Recently there has been a detection of a high-energy astrophysical neutrino source TXS 0506+056 (IceCube 1807.08794 and 1807.08816) (see Laha 1807.05621 for exotic physics constraints)

Photons corresponding to IceCube excess neutrinos produced in astrophysical sources p +! p + 0! +... p +! n + +! +... Kistler 1511.01530 IceCube excess neutrinos imply a guaranteed high energy gamma-ray background Ahlers and Murase 1309.4077 Can one use these photons to do physics? We use these photons for the first time to search for new physics p + p!... + ±!... + + p + p!... + 0!... +

ALPs help us observe these very high-energy gamma-rays High energy astrophysical source Photon converted to ALP in the magnetic field of the source galaxy VHE photons get attenuated in space ALP propagates freely in space ON OFF search technique: in the presence of ALPs, we will observe these photons otherwise we will not observe these photons propagates freely in space Our proposal is sensitive to the energy range where photons are maximally attenuated Our technique is sensitive to a new ALP parameter space Present and near-future gamma-ray instruments like HAWC, CTA, LHAASO can detect these photons and put a new bound on the ALP parameter space Milky Way Galaxy ALP converted back to photon in the magnetic field of the Milky Way

Methodology

Astrophysical neutrino spectrum IceCube ICRC2017 Niederhausen etal. We use two different fits to the astrophysical " neutrino spectrum E E (E ) / Neutrino energy E b 2 + E b 2 # 1 2 Niederhausen etal. E b (TeV) 12 2.48 Kopper etal. 40 2.92 p +! n + +! +... p +! p + 0! +... E 2 E IceCube ICRC2017 Niederhausen etal. 2 photons for 3 neutrinos Many models which reproduce the spectrum of these neutrinos IceCube ICRC2017 Kopper etal. IceCube Preliminary

Astrophysical parameters There are various models (~ 100+) in the literature which postulate the astrophysical sources producing the IceCube observations Astrophysical parameters (like magnetic field, photon density, plasma density) vary between them We try to follow a model-independent and conservative approach where we only take the magnetic field of the galaxy in which the neutrino source is embedded Fletcher 1104.2427 Typical values for the total and regular equipartition magnetic field strengths for 21 galaxies We use the variations zero redshift B? =3, 5, and 10 µg at Coherence length at zero redshift = 1 kpc

Astrophysical parameters -2 Schober etal., 1603.02693 B(z, )=B 0 n(z) 1/6 ( H(z)) 1/3 log(b [G]) -3-4 -5 2 M yr Star formation rate 1 400 M yr 1 z =0 =2.14 0 2 4 6 8 10 Model for interstellar photon density in progenitor galaxies u ISRF, d = X i spectral energy density f i 8 h c 3 3 exp(h /kt i ) local magnetic field n(z, )=n 0 (1 + z) 3 particle density u [erg cm 3 Hz 1 ] log 1 d u [erg cm 3 Hz 1 ] log -18-20 -22-24 -26-28 -30-18 -20-22 -24-26 -28 Schober etal., 1404.2578 normal galaxy starburst galaxy log ( [Hz]) star formation rate,0 1/1.4 Schober etal., 1404.2578 normal galaxy starburst galaxy -30 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 log ( [Hz]) z =0 z =1 z =2 z =5 z = 10-6 -8-10 -12-14 -16-18 -4-6 -8-10 -12-14 -16-18 n [cm 3 Hz 1 ] log n [cm 3 Hz 1 ] log

High-energy gamma-ray production in the Milky Way The photons that we are concerned with have an energy & 20 TeV An important source of photons at these energies is cosmic-ray interaction with the interstellar medium p + p!... + 0!... + Photons at these energies have not been detected ALPs can induce spectral distortions in this gamma-ray spectrum These photons are strongly correlated with the Galactic plane Fermi-LAT 1702.00476 Ahlers and Murase 1309.4077 Galactic plane in 10 GeV 2 TeV

Gamma-ray detectors (HAWC) Gamma-rays and cosmic-rays between 100 GeV and 100 TeV Angular resolution varies from ~ 0.2 0 to 2 0 Above 10 TeV the energy resolution is below 50% Reject > 99% of cosmic-ray showers at energies above roughly 3 TeV hawc-observatory.org DuVernois HAWC and HAWC-South: TeV all-sky gamma-ray experiments for the Northern and Southern hemispheres

Gamma-ray detectors (LHAASO) The Large High Altitude Air Shower Observatory (LHAASO) project All-sky instrument Detect cosmic Rays and Gamma-Rays in the wide energy range ~10 11 ev 10 17 ev Uses different detection techniques: (1) LHAASO-KM2A: 1 km 2 array of 5635 scintillator detectors for electromagnetic particle detection (2) LHAASO-MD: 1 km 2 array of underground water Cherenkov tanks for muon detection (3) LHAASO-WCDA: Surface water Cherenkov detector facility ~90000 m 2 (4) LHAASO-WFCTA: 24 wide field-of-view air Cherenkov and fluorescence telescopes Sciascio The LHAASO project: a new generation cosmic-ray experiment

Vogel, Laha, and Meyer 1712.01839 Signal morphology 180 180 90 The incident ALP flux is isotropic and homogenous Galactic Due to the Galactic magnetic field, the signal on Earth is highly anisotropic: ALP bubble for Jansson & Farrar magnetic field Useful for signal v/s background discrimination

10-10 CTA Results LHAASO and HAWC will probe new parameter space 10-11 10-12 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-10 5 sensitivity 10 years LHAASO CTA ADMX Haloscopes HAYSTAC ORGAN These are the farthest sources of high-energy photons that we know Very difficult to mimic these photons by astrophysical spectrum modifications Astrophysical uncertainties will decrease in the near future 10-11 2 limit ADMX Haloscopes HAYSTAC ORGAN New physics result with these guaranteed photon sources 10-12 10-10 10-9 10-8 10-7 10-6 10-5 10-4 Promising probe Vogel, Laha, and Meyer 1712.01839

Conclusions Searching for axion like particles is one of the major frontiers of physics Many of the well motivated parameter space can be probed by astrophysical systems We show that searching for the very high-energy photon flux corresponding to the IceCube neutrinos will probe new ALP parameter space This is a new search technique in ALP physics Questions and comments: ranjalah@uni-mainz.de

Puzzling questions about the high energy astrophysical universe Gaisser 1605.03073 Fermi- LAT Gamma-ray sky: what process produces them? Leptonic: Hadronic: e +! e + p + p! 0! + p + p! /K +...! / The key difference are the neutrinos Cosmic rays observed over a huge energy range Neutrinos are inevitably produced in cosmic ray interactions