Analysis of Dynamic Systems

Similar documents
Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

TIME RESPONSE Introduction

ME 3210 Mechatronics II Laboratory Lab 6: Second-Order Dynamic Response

MODERN CONTROL SYSTEMS

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

Automatic Control Systems

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

Design of Controller for Robot Position Control

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

CHAPTER 2 Quadratic diophantine equations with two unknowns

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

S n. = n. Sum of first n terms of an A. P is

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Electrical Engineering Department Network Lab.

u(t) Figure 1. Open loop control system

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

Problems and Solutions for Section 3.2 (3.15 through 3.25)

Let s express the absorption of radiation by dipoles as a dipole correlation function.

Mechatronics II Laboratory Exercise 5 Second Order Response

BMM3553 Mechanical Vibrations

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

EEC 483 Computer Organization

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

M. Rafeeyan. Keywords: MIMO, QFT, non-diagonal, control, uncertain

Chapter 9 - The Laplace Transform

Review - Week 10. There are two types of errors one can make when performing significance tests:

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Control Systems. Transient and Steady State Response.

Section 8 Convolution and Deconvolution

Big O Notation for Time Complexity of Algorithms

N! AND THE GAMMA FUNCTION

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Harmonic excitation (damped)

EECE 301 Signals & Systems Prof. Mark Fowler

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

Modal Analysis of a Tight String

12 Getting Started With Fourier Analysis

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13

Suggested Solutions to Assignment 1 (REQUIRED)

Introduction to Hypothesis Testing

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1

CHAPTER 7: SECOND-ORDER CIRCUITS

EECE 301 Signals & Systems Prof. Mark Fowler

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Pure Math 30: Explained!

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CONTROL SYSTEMS. Chapter 10 : State Space Response

Introduction to Control Systems

State space systems analysis

Chapter 7: Inverse-Response Systems

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

EECE 301 Signals & Systems Prof. Mark Fowler

F D D D D F. smoothed value of the data including Y t the most recent data.

Vibration 2-1 MENG331

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

Single Phase Line Frequency Uncontrolled Rectifiers

Ruled surfaces are one of the most important topics of differential geometry. The

ECEN620: Network Theory Broadband Circuit Design Fall 2014

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

CHAPTER 2. Problem 2.1. Given: m k = k 1. Determine the weight of the table sec (b)

Extremal graph theory II: K t and K t,t

ME 375 FINAL EXAM Friday, May 6, 2005

Algorithmic Discrete Mathematics 6. Exercise Sheet

The Moment Approximation of the First Passage Time For The Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

Lecture 15: Three-tank Mixing and Lead Poisoning

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

LIMITS OF FUNCTIONS (I)

arxiv:math/ v1 [math.fa] 1 Feb 1994

Math 2414 Homework Set 7 Solutions 10 Points

Lecture 9: Polynomial Approximations

CHAPTER 2 TORSIONAL VIBRATIONS

A Note on Random k-sat for Moderately Growing k

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

Moment Generating Function

Communications II Lecture 4: Effects of Noise on AM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Chapter 8 Objectives

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

Hadamard matrices from the Multiplication Table of the Finite Fields

Brief Review of Linear System Theory

Notes 03 largely plagiarized by %khc

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

1 Notes on Little s Law (l = λw)

arxiv: v1 [math.nt] 13 Dec 2010

Curvilinear Motion: Normal and Tangential Components

Clock Skew and Signal Representation

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

21. NONLINEAR ELEMENTS

Solutions to selected problems from the midterm exam Math 222 Winter 2015

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

Transcription:

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Chaper 8 Time-Domai Aalyi of Dyamic Syem 8. INTRODUCTION Pole a Zero of a Trafer Fucio A. Bazoue Pole: The pole of a rafer fucio are hoe value of for which he fucio i uefie (become ifiie). Zero: The zero of a rafer fucio are hoe value of for which he fucio i zero. Example of he Effec of Pole/Zero Locaio Figure 8-. From he evelopme ummarize above, he followig cocluio ca be raw: /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem A pole of he ipu fucio geerae he form of he force repoe. (i.e., he pole a he origi geerae a ep fucio a he oupu) A pole of he rafer fucio geerae he form of he aural repoe (i.e., he pole a σ geerae e σ ) A pole o he real axi geerae a expoeial repoe of he form pole locaio o he real axi. Thu, he pole farher he lef a pole i o he egaive e σ, where σ i he.8.6.4 Pole-Zero Map.9.8.7.6 exp(-) exp(-) exp(-) exp(-) exp(-3) exp(-4) I m a g A x i. -. R e p o e.5.4.3 exp(-3) exp(-4) -.4. -.6. -.8 - -4.5-4 -3.5-3 -.5 - -.5 - -.5 Real Axi 3 4 5 Saar Form of he Fir Orer Syem Equaio B y + y u( ) The rafer fucio of he previou yem i efie by () G B / ( / ) Y U + where i kow a he ime coa. I ha imeio of ime for all phyical yem ecribe by he fir orer iffereial equaio above. The above equaio ca be repreee a /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem U ( ) G( ) Y ( ) Trafer Fucio Example i) Sprig-Damper Syem Equaio of moio or by + ky k x k y + y x b b k Comparig he above equaio wih he aar oe, o ha wih he ui of b / k ime coa [ ] [ b / k] [ N./m] [ N/m] [ ] k b x y ii) RC-Circui Equaio of moio wih he ui of RCe o + eo ei RC ime coa [ ] [ RC] [ V.] [ q] [ q] [ V] [ ] ei i R C eo iii) Liqui Level Syem Equaio of moio h + h q RC C RC ime coa wih he ui of [ ] [ RC] [ m] 3 m / m [ ] Q + q i Capaciace C H + h Reiace R Loa valve Q + q ο iv) Thermal Syem Equaio of moio 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem wih he ui of [ ] [ ] θ + θ qi RC C RC ime coa o C [ Kcal] RC o [ Kcal/ ] C Thu whe a fir orer yem i wrie i he form of Equaio () wih he coefficie of y / i equal o a he coefficie of he epea variable i ( / ) i which repree he ime coa of he yem a ha alway he imeio of [ ] ime regarle of he phyical yem uer coieraio. Iere i Aalyi of Dyamic Syem Afer obaiig a moel of a yamic yem, oe he ee o apply e igal o ee if he yem perform accorigly o cerai eig pecificaio pu forwar by he eig of he yem. I geeral, oe require he yem o be. able ( yem oe o grow ou uboue ). wih a fa repoe 3. ha a mall error a poible (eay ae error). Oher performace crieria may alo exi bu we will be maily cocere wih he above meioe hree. Uually he acual ipu o he yamic yem i ukow i avace; however, by ubjecig he yem o aar e igal, we ca ge a iicaio of he abiliy of he yem performace uer acual operaig coiio. For example, he iformaio we gai by aalyzig he yem abiliy a i pee of repoe a eay ae error ue o variou ype of aar e igal, will give a iicaio o he yem performace uer acual operaig coiio. Typical Te Sigal i) Sep Ipu θ Very commo ipu o acual yamic yem. A i repree a ue chage i he value of he referece ipu u( ) qi Ove Temperaure qo θ R ii) Ramp Ipu (Coa Velociy) Thi repree a iuaio where he ipu ha a coa rae of icreae wih ime (i.e. coa velociy) u( ) r α lope aα r 4/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem iii) Parabolic Ipu (Coa Acceleraio) Occur i iuaio where he ipu ha a coa acceleraio. u( ) u( ) a iv) Impulive Loa Ipu A large loa over a hor uraio of ime <<. yem ime coa ca be coiere a a impule. F ˆ δ, Fˆ F h of imp ul e reg u( ) u( ) F u( ) F impule u( ) Fˆ δ v) Siuoial Loa Ipu u Ai B co 4 3 A co() B i() - - -3-4.5.5.5 3 3.5 4 4.5 5 Naural a Force Repoe The oluio y( ) o he homogeeou iffereial equaio () i compoe of wo par: Complemeary oluio: yc Paricular oluio : y p aural repoe ue o iiial coiio. force repoe uch ha: y( ) y ( ) + y ( ) p c 5/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Traie a Seay Sae Repoe Traie repoe: repoe from iiial ae o fial ae. Seay ae Repoe: repoe a ime approache.. Sep Repoe.8.6.4. Ampliue..8.6.4 Traie Seay Sae. Noice ha if lim y ( ) a lim y ( ) c 5 5 o be eay ae; where he eay ae oluio i p Time (ec) a boue fucio of ime he he yem i ai lim y lim y y c p 8. TRANSIENT RESPONSE ANALYSIS OF FIRST-ORDER SYSTEM Roor moue i bearig i how i he figure below. Exeral orque T ( ) i applie o he yem. T ( ) J b Apply Newo eco law for a yem i roaio or Defie he ime coa ( J / b) 6/33 T ( ) M J θ J J J + b T + b / J T / J + T ( J / b) * ( ), he previou equaio ca be wrie i he form + T * ( ), ( ) b

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem which repree he equaio of moio a well a he mahemaical moel of he yem how. I repree a fir orer yem. Free Repoe T ( ) To fi he repoe ( ), ake LT of boh ie of he previou equaio. + Ω ( ) Ω( ) ( ) + Ω ( ) L[ ] L[ ] Ω + Takig ivere LT of he above equaio will give he expreio of ( ) ( b / J ) ( / ) e e I i clear ha he agular velociy ecreae expoeially a how i he figure below. Sice ( / ) lim e ; he for uch ecayig yem, i i coveie o epic he repoe i erm of a ime coa. A ime coa i ha value of ime ha make he expoe equal o -. For hi yem, ime coa J / b. Whe, he expoe facor i Thi mea ha whe ime coa We alo have ( ) ( ) / / e e e.368 36.8 % ( ), he ime repoe i reuce o 36.8 % of i fial value. J / b ime coa.37 4..37. 3 4 7/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Remember Force Repoe T ( ) + T * ( ) To fi he repoe ( ), ake LT of boh ie of he previou equaio for zero iiial coiio. * Ω( ) ( ) + Ω ( ) T L[ ] L [ ] + Ω T * The above equaio ca be wrie i he more geeral form a C R where C ( ) i he oupu or he repoe a equaio ca be repreee a i) Impule Repoe T ( ) * ( ) Ω + + R i he ipu or referece igal. The above R( ) G( ) C ( ) + ( / ) Trafer Fucio I hi cae, for a ui impule ipu of magiue δ R( ) a he above equaio ca be wrie i he form from which C r B, B B + ( / ) c( ) B e ( / ) The figure below how he repoe c( ) B e + mu chage iaaeouly from a ime ( ) o a ime ( ). Sice we aume zero I.C, he oupu. 8/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem B c( ) c B e ( / ) Figure. Impule repoe of a fir orer yem ii) Sep Repoe I hi cae, for a ui ep ipu of magiue B, R( ) a he above equaio ca be wrie i he form B where Therefore B a a + + + C B a B + a a B + B + for which C B B B + + ( ) ( / ) ( / ) c B Be B e The repoe c( ) i repreee i he Figure below. 9/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem B.98 B.9 B c( ) lope of he age a origi c( ) B.63 B Rie Time, : The ime for he repoe o go from % o 9% of i fial value. T.* r T r Selig Time, T : The ime for he repoe o reach, a ay wihi, ± % of i fial value. T 4*. B 3 4 5 T r T Time coa: I i he ime for Figure Sep repoe of a fir orer yem e o ecay o 37 % of i fial value, i.e., e e.37 Aleraively, he ime coa i he ime i ake for a ep repoe o rie o 63 % of i fial value, i.e., ( / ) c B e B e.63 B Rie Time: ime for he repoe o go from % o 9 % of i fial value. The rie ime fou by olvig he expreio for he ep repoe for he ifferece i ime.9 c( )., ha i or ( / ) ( e ).9 ( / ) ( / ) B e.9b ( ) e. / l(.).3.3.9 T i c a r imilarly or ( / ) B e.b /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem ( / ) ( e ). ( / ) Hece, he rie ime i ( ) e.9 / l(.9).5.5 Tr.9.. Selig Time: ime for he repoe o reach, a ay wihi % ime c. Thu, or or T i fou by olvig he expreio.98 ( / ) ( / ) ( ) ( / ) c B e.98b. ± of i fial value. The elig ( ) e.98 e. / l(.) Remark: T l(.) 4. The maller he ime coa, he faer i he repoe a he furhe i he pole of. Seay ae error B C ( ) ( + / ) e ue o ep ipu. lim c lim c p lie o he lef half of 3. The yem i able, i.e., provie ha he pole / he complex plae. Im plae Re / iii) Ramp Repoe I hi cae, for a ramp ipu of lope B, B r B R L r a he expreio of C ( ) above ca be wrie i he form where B a a b + + + + C /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Therefore Hece B B a B + + B B a B + + B + B b B / + C / B B B B + + + + ( / ) ( / ) c L C B + B + B e B + e c( ) r ( ) B B ( / ) c B + e Figure Ramp repoe of a fir orer yem /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem 8.3 TRANSIENT RESPONSE ANALYSIS OF SECOND-ORDER SYSTEM Some Example of Seco Orer Syem Free Vibraio wihou ampig Coier he ma prig yem how i Figure 3-. The equaio of moio ca be give by 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem or where m x + k x k x + x x + x m i he aural frequecy of he yem a i expree i ra/. Takig LT of boh ie of he above equaio where x( ) a x ( ) x give X ( ) x x + X ( ) rearrage o ge a he repoe [ ] k m + L x x x + x X ( ), Remember pole are ± j I i clear ha he repoe x x + + X ( ) + complex cojugae m x( ) Figure 8- Ma Sprig Syem x i give by x x( ) i( ) + x co( ) x coi of a ie a coie erm a epe o he value of he iiial coiio x a x. Perioic moio uch ha ecribe by he above equaio i calle imple harmoic moio. k x( ) lope x Im plae Re if x Figure 8- x, π Perio T Free repoe of a imple harmoic moio a pole locaio o he -plae co( ) x x Free Vibraio wih Vicou ampig 4/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Dampig i alway pree i acual mechaical yem, alhough i ome cae i may be egligibly mall. Coier he ma prig amper yem how i he figure. The equaio of moio ca be give by m x + bx + k x () he characeriic equaio of he above equaio i + + () m b k a he wo roo of hi equaio are, ± 4 b b m k (3) m x( ) b m Figure 8-3 k We coier hree cae: b 4 m k < Roo are complex cojugae (uerampe cae) b 4 m k Roo are real a repeae b 4 m k > Roo are real a iic (overampe cae) (criically ampe cae) I olvig equaio () for he repoe x( ), i i coveie o efie k m uampe aural frequecy, [ ra/] a acual ampig value ζ ampi graio criical ampig value b km a rewrie equaio () i he form + ξ + (4) which i he aar form equaio of a eco orer yem. i) Uerampe Cae < ξ < Takig LT of boh ie of equaio () where x( ) x a x ( ) x, a rearrage o ge X ( ξ ) kowig ha equaio (4) ca be wrie a + x + x + ξ + + ξ + + ξ + ξ wich i a complee quare equaio. The aure of he roo a of equaio (4) wih varyig value of ampig raio ξ ca be how i he complex plae a how i he figure (5) 5/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem below. The emicircle repree he locu of he roo a i he rage < ξ < ξ for iffere value of ξ ξ ξ ξ for ξ > for ξ > ξ + ξ ξ ξ ξ Defie ζ ampe aural frequecy (ra/) i how The relaiohip bewee ζ a he o-imeioal frequecy ( / ) he figure below..9 Noimeioal frequecy /.8.7.6.5.4.3.. The X from which..4.6.8 Dampig raio ζ b/b cr Figure No-imeioal frequecy veru he ampig raio. ξ x + x ( + ξ ) x ( ) + ( + ξ ) + ( ) + ξ + 6/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem or ξx + x ξ ξ x( ) L X ( ) e i + xe co ξ ξ x x e x i co + + x ξ x, he above equaio reuce o If he iiial velociy or where ξ ξ x x e i co + ξ (8) ξ i( φ ) x C e + (9) (6) (7) ξ φ a a ξ x( ) C x ξ Im () Ce ξ ξ + j plae j ξ Re j Dampe perio, π T ξ j Remark: Noice ha for hi cae (ueampe cae. he repoe i a ecayig iuoi. < ξ < ).. he frequecy of ocillaio i ( ξ ) 3. For poiive ampig ( ) ξ >, he pole a have egaive real a lie eirely o he le half of he complex plae. A a reul he raie repoe ecay wih ime a he yem i ai o be able. 4. The rae a which he raie repoe ecay epe o he coefficie i e ξ. Larger faer ecay of ξ of ξ (i.e., maller / ξ ) lea o faer raie repoe (i.e., x ). The erm / ξ i i hi cae he ime coa of he eco 7/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem orer yem. Therefore, he ime coa of he eco orer yem ca be mae maller (i.e., i pee faer) by movig he real par ξ farher away from he origi of he complex plae. ii) Criically ampe Cae ζ I hi cae, he pole he pole a become ξ a he repoe x( ) ca be obaie from equaio (5). Thu ( ) X ( ) + + ( + ) from which + x + x + x + x + x x + x x + ( + ) ( + ) ξ + ( + ) x x e x x e ξ which i ecayig expoeially a how i he figure below x( ) Im x plae Re ξ iii) Overampe Cae boh real a he repoe ξ > I hi cae, he pole he pole ξ + ξ x become ξ ξ ξ + ξ x x( ) x e ξ ξ ξ ξ + + where he repoe i how i he figure below + x x ξ ξ e a are ( ξ ξ ) + ( ξ ξ ) 8/33

ME 43 Syem Dyamic & Corol x( ) x Icreaig ξ Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Im plae Re Remark: The repoe i hi cae (overampe cae ξ > ) i imilar o ha of he fir orer yem a he oher. a i he um of wo expoeial. The fir ha a ime coa The ifferece bewee hee wo ime coa icreae a he ξ icreae o ha he expoeial erm correpoig o he maller oe (i.e., ) ecay much faer ha ha correpoig o. Uer uch cae he eco orer yem may be approximae by a fir orer oe wih ime coa equal o. From uy of he fir orer yem we fou ha he repoe remai wihi % of i fial value i > 4 ime coa 4 ( ime coa). For a eco orer uerampe yem ζ a he ime require for he oluio o remai wihi % of i fial value i calle he elig ime T which from above i give by T 4 4 ζ Free Repoe of a Seco Orer Syem by MATLAB MATLAB PROGRAM: >> w; >> zea[..5.7 5]; >> for k:6 um[ w^]; e[ *zea(k) w^]; yf(um,e) impule(y); hol o >> e 9/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem 5 Free Repoe of a eco orer yem a iffere value of he ampig raio ζ ζ.5 (Uerampe ) ζ.5 ( Uerampe) ζ.7 (Uerampe) ζ (Criically ampe) Free Repoe x() 5-5 ζ 5 (Overampe) ζ (Overampe) - -5 3 4 5 Time () /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Experimeal Deermiaio of ampig raio (Logarihmic Decreme) I i omeime eceary o eermie he ampig raio a ampe aural frequecie of recorer a oher irume. To eermie he ampig raio a ampe aural frequecy of a yem experimeally, a recor of ecayig or ampe ocillaio, uch a ha how i he Figure below i eee. /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem x( ) x π T + T x x 3 3 x π T The raio x x i equal o ξ co( φ ) ξ co( φ ) x x C e x x C e x x co co( φ ) ξ φ e ice a are elece co Hece T eco apar, oe ca wrie ( φ ) co ( + T ) φ co( + T φ ) co( + π φ ) co( φ ) x x e ξ T The Logarihmic Decreme δ i efie a he aural logarihm of he raio of ay wo ucceive iplaceme ampliue, o ha by akig he aural logarihm of boh ie of he above equaio x π πζ j δ l ζ T ζ x j+ ζ ζ (*) olvig he above equaio for ζ, /33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem ζ δ π + δ Noice from Eq. (*) ha if ζ << (ha i, very low ampig, which quaiaively mea b << b cr ), ζ a hu δ πζ (**) The figure below how a compario bewee Eq. (*) a (**) veru he ampig raio ζ. Logarimic ecreme δ 8 6 4 δ π ζ / (-ζ ).5 δ π ζ...3.4.5.6.7.8.9 Dampig raio ζ For o-ucceive ampliue, ay for ampliue x a oberve ha x x x x3 x4 x x x x x x x + 3 4 5 + Takig he aural logarihm of boh ie of he above equaio give x +, where i a ieger, we So x x x x + + + l l l l x+ x x3 x+ δ + δ + + δ δ x x δ l or δ l x x + Table- Logarihmic ecreme for Variou Type of Srucure Type of Srucure Approximae Rage of 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Example Logarihmic Decreme, δ Muliory Seel Builig.. Seel Brige.5.5 Muliory Cocree Builig.. Cocree Brige..3 Machiery Fouaio.4.6 Sep Repoe of a Seco Orer yem: Coier he mechaical yem how i he Figure below. Aume ha he yem i a re for <. A, he force u a ( ) [where a i a coa a ( ) i a ep force of magiue N] i applie o he ma m. The iplaceme i meaure from he equilibrium poiio before he ipu force u i applie. Aume ha he yem i uerampe ( ζ < ) k x m u b The equaio of moio for he yem i 4/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem m x + bx + k x ai( ) The TF for he yem i X U m + b + k Hece Defie L X a m + + m b k b k + + m m k m uampe aural frequecy, [ ra/] a a The acual ampig value ζ ampi graio criical ampig value b km Hece, X L ( ) X a m + ξ + a m + ζ + a m + ζ + ζ + ( ) ( ) ( ) a ζ * + ζ m ( + ζ ) + ( + ζ ) + (8-6) + ζ + ζ + ζ + a ζ ζ + m ( + ζ ) + ( + ζ ) + 5/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem where ζ. The ivere Laplace raform of he la equaio give a ζ ζ ζ x( ) e i co e m ζ a ζ ζ e i + co m ζ ζ a e ζ i + a m ζ ζ The repoe ar from ( ) x a reache of he repoe curve i how i he figure below. x a m. The geeral hape.4 Sep Repoe. a/m.8 Ampliue.6.4 Figure 8- Sep repoe of a eco orer yem. The repoe curve how correpo o he cae where ζ.7 a ra/.. 3 4 5 6 7 8 Time (ec) Aume ha he yem i uerampe ( ζ < ) MATLAB PROGRAM: >> w; >> zea[..5.7 5]; >> for k:6 um[ w^]; e[ *zea(k) w^]; yf(um,e) ep(y); hol o u( ) x( ) U ( ) Ipu X + ζ + ( ) Oupu? 6/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem >> e.6.4 ζ. Sep Repoe..5.7 Ampliue.8.6.4 5. 4 6 8 4 6 8 Time (ec) Impule Repoe of a Seco Orer yem: MATLAB PROGRAM: >> w; >> zea[..5.7 5]; >> for k:6 um[ w^]; e[ *zea(k) w^]; yf(um,e) impule(y); hol o >> e u( ) x( ) U ( ) Ipu X + ζ + ( ) Oupu? 7/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Impule Repoe.8 ζ. Ampliue.6.4. ζ.5 ζ.7 ζ. ζ. ζ 5. -. -.4 5 5 5 3 Time (ec) 8/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Ipu Table 8. u ( ) y( ) u ( ) B (Ramp of Slope B ) u B, (Sep of magiue B ) * δ u B (Impule of magiue B ) The Repoe of he Fir Orer Liear Syem y + y u ( ), y( ) y where u ( ) y oup u a ipu Repoe y( ) if y( ) y Repoe y( ) if ( / ) y e - ( / ) ( / ) ( ) + + y B e y e ( ) ( / ) ( / ) y y e + B e y B + y e ( ) / y ( / ) y B + e ( / ) ( ) y B e y B e ( ) / 9/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Table 8. The Free Repoe of he Seco Orer Liear Syem mx + bx + kx, x x a x x k The aural frequecy ra/ m b b The ampig raio ζ b mk The ampe frequecy cr for ζ < ζ Dampig raio ζ < ζ ζ > Repoe y( ) ζ ζ x x e x i co + + x ζ x x, hi implifie o If ζ ζ x( ) xe i co + ζ x + ζ ζ e i a ζ ζ x ζ ζ e co a ζ ζ + ( + ) If x( ) x x( ) x ( + ) e x x e x x e, hi implifie o ζ + ζ x x( ) x e ζ ζ ξ + ζ x + x e + ζ ζ x x, hi implifie o If x ( ζ ζ ) + ( ζ ζ ) ζ + ζ ζ ζ x ζ + ζ e + ξ + ζ e ζ 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Table 8.3 The Force Repoe of he Seco Orer Liear Syem, a mx + bx + kx f x x k The aural frequecy ra/ m b b The ampig raio ζ b mk The ampe frequecy cr ζ for ζ < ζ The phae agle ψ a for ζ < ζ For overampe yem ζ >, he ime coa are / ζ ζ / ζ ζ +, ur ( ) ramp wih lope Ipu u ( ) ui ep δ ( ) ui impule Dampig raio ζ < ζ Ipu Repoe y( ) f u r y ζ a ζ e ζ r + ζ co i + y ( ) ( ψ ) f u ζ e co ζ δ ( ) i δ f r r f u f u δ ( ) y ( ) e f ζ > f ( ) u ( ) ζ e y ζ y + e + e y e e δ ζ + ζ r ( yr e e ) ζ 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem f u y ( ) ( e e ) δ ( ) f yδ ( ) ( e e ) ζ ζ 3/33

ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem 33/33