MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Similar documents
SUPPLEMENTARY INFORMATION

Electronic Supplementary Information. Tuning the magneto-optical response of TbPc 2 single molecule magnets by the choice of the substrate

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Spins Dynamics in Nanomagnets. Andrew D. Kent

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

Quantum dynamics in Single-Molecule Magnets

INTRIQ. Coherent Manipulation of single nuclear spin

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

arxiv: v1 [cond-mat.mes-hall] 12 May 2017

arxiv: v2 [quant-ph] 28 Nov 2017

single-electron electron tunneling (SET)

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Manipulating spins of magnetic molecules: Hysteretic behavior with respect to bias voltage

First- principles studies of spin-crossover molecules

SUPPLEMENTARY INFORMATION

2D-2D tunneling field effect transistors using

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Quantum Nano-Engineering Lab

Reading and Writing Single-Atom Magnets

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Edinburgh Research Explorer

Cotunneling and Kondo effect in quantum dots. Part I/II

CHAPTER 11 Semiconductor Theory and Devices

Voyage dans le nanomonde des aimants

Electrochemically Synthesized Multi-block

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Optical studies of current-induced magnetization

Coupling of spin and orbital motion of electrons in carbon nanotubes

Steep-slope WSe 2 Negative Capacitance Field-effect Transistor

Intermolecular interactions (dipolar and exchange)

Wafer-scale fabrication of graphene

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Nanomaterials and their Optical Applications

I-V characteristics model for Carbon Nanotube Field Effect Transistors

Interference: from quantum mechanics to nanotechnology

Seminars in Nanosystems - I

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

en électronique moléculaire

Magnetic quantum tunnelling in subsets of

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

The First Cobalt Single-Molecule Magnet

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach

Towards nano-mri in mesoscopic transport systems

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Recent Developments in Quantum Dynamics of Spins

Decoherence in molecular magnets: Fe 8 and Mn 12

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Nano devices for single photon source and qubit

Nanostrukturphysik (Nanostructure Physics)

Investigation of nanoelectrodes by Transmission Electron Microscopy

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

Energy dissipation in single-electron devices at high-frequencies

Graphene Fundamentals and Emergent Applications

Challenges for Materials to Support Emerging Research Devices

Coulomb blockade in metallic islands and quantum dots

Materials Chemistry C

Spin injection. concept and technology

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

Carbon Nanomaterials

Monolayer Semiconductors

Final exam. Introduction to Nanotechnology. Name: Student number:

Introduction to Quantum Dynamics and Control

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

Ferroelectric Field-Effect Transistors Based on MoS 2 and

PI 2 -ICMA. Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications

Electronic Supporting Information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Determination of the tunnel rates through a few-electron quantum dot

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

Lecture 2: Double quantum dots

SUPPLEMENTARY INFORMATION

Electron spin qubits in P donors in Silicon

Quantum Nano-Engineering Lab

Short column around Transistor. 12/22/2017 JC special topic

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Spin Injection into a Graphene Thin Film at Room Temperature

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

Formation mechanism and Coulomb blockade effect in self-assembled gold quantum dots

SUPPLEMENTARY INFORMATION

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Transcription:

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées Nationales Nanosciences et Nanotechnologies 2012

Content - remise en contexte du projet - description des objectifs - stratégie suivie - résultats marquants et récents - quelques indicateurs d impact (production scientifique, brevets, recrutements )

1947 Remise en contexte du projet Electronic revolutions 1988 Electron: spin charge phase Si Spintronics J. Bardeen, W. Shockley, W. Brattain: Nobel - 1956 A. Fert, P. Grünberg: Nobel - 1987 Quantum electronics 20 Sept. 2012 Porquerolles Wernsdorfer wolfgang.wernsdorfer@grenoble.cnrs.fr - MolNanoSpin

Description des objectifs Molecular quantum spintronics Linking the ideas of three disciplines: spintronics, molecular electronics, and quantum computing Manipulating spins and charges in electronic devices containing one or more molecules to perform basic quantum operations L. Bogani & W. Wernsdorfer, Nature Mat. 7, 179 (2008) Scheme I direct coupling Project: Fabrication, characterization and study of molecular devices molecular spin-transistor molecular spin-valve and spin filter molecular double-dot devices carbon nanotube nano-squids etc. Nature Mat. 10, 502 (2011) Nature 488, 357 (2012) Scheme II indirect coupling

Stratégie suivie N 1 : Institute Néel N 2 : Institut de Chimie Moléculaire et des Matériaux d'orsay N 3 : Institut Lavoisier

Molecule Grafting Fe 4 Magnetic Core Co 7 Fe 6 TbPc 2 Aromatic rings Grafting ligands π-stacking L. Bogani et al., Angew. Chem. Int. Ed. 48, 746 (2009) S. Klyatskaya, et al., J. Am. Chem. Soc. 131, 15143 (2009) A. Giusti, et al., Angew. Chem. Int. Ed. 48, 4949 (2009)

Molecule Grafting on Carbon Nanotubes Dipping the device into the solution of molecule CNT device Grafted molecules on the CNT device L. Bogani et al., Angew. Chem. Int. Ed. 48, 746 (2009) S. Klyatskaya, et al., J. Am. Chem. Soc. 131, 15143 (2009) A. Giusti, et al., Angew. Chem. Int. Ed. 48, 4949 (2009)

Grafting of SMMs Co 7 Fe 6 polyoxometalate (POM) Na 6 ((CH 3 ) 4 N) 4 [Fe 4 -(H 2 O) 2 (FeW 9 O 34 ) 2 ] 45H 2 O 200 nm A. Giusti, et al., Angew. Chem. Int. Ed. 48, 4949 (2009)

CNTFET building for transport measurements HFCVD using SAM strategy networks of SWNT (few dozens) Source-drain palladium contacts UV lithography, e-beam evaporation and liftoff processes Burning of the metallic SWNT SEM image of grown SWNT Raman spectrum of grown SWNT Schematic view of the SWNT-FET SEM image showing the gate region of a device (large number of SWNTs

Transport properties at 300 K Electron transfer from 1 to the NT Repeated grafting cycles Gate Potential shifts toward low values Increasing ambipolar effect (transition from p to n-type transistor) Band theory explanation:

Fe6@NT Individual molecules present slow relaxation of magnetization Hybrid magnetic POMs? - Reinforcement and/or control of the molecule/substrate interactions - Introduction of functional groups (RAMAN active, etc ) OH Elaboration of a whole family of carboxylato magnetic POM species O HO O An example : a {Ni 16 } glutarate POM :

Résultats marquants et récents Molecular spin-transistor Molecular spin-valve Electronic read-out of a single nuclear spin using a molecular spin-transistor R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer & F. Balestro, Nature 488, 357 (2012) Supramolecular Spin Valves M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben & W. Wernsdorfer Nature Mat. 10, 502 (2011)

E (K) J3N Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium S = 1/2 radical 600 K Tb 3+ anisotropic spin J = 6 H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44, 2 (2005), J. Am. Chem. Soc. 127, 3650 (2005)

40 mk Quantum Tunneling of Magnetization in Lanthanide SMMs N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44, 2 (2005)

H = Zeeman + LF term + A hf J I + P quad {I z 2 + (1/3)I(I+1)} -643.8-644.0-644.2-644.4-644.6 A hf = 0.0173 cm -1 P quad = 0.010 cm -1 : avoided crossing occurs by off-diagonal LF term -60-40 -20 0 20 40 60 : avoided crossing occurs by transverse field Others: avoided crossing does not occur by either LF terms nor transverse field N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44, 2 (2005) and J. Am. Chem. Soc. 127, 3650 (2005)

Molecular spin-valve Devices Molecular spin-transistor Electronic read-out of a single nuclear spin using a molecular spin-transistor R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer & F. Balestro, Nature 488, 357 (2012) Supramolecular Spin Valves M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben & W. Wernsdorfer Nature Mat. 10, 502 (2011)

Device characteristics T = 40 mk Source Drain SiO 2 Backgate Supramolecular Spin Valves M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, W. Wernsdorfer Nature Mat. 10, 502 (2011)

SMM spin reversal detection conductance close to a degeneracy point Spin flips Angular dependance

Quantum Tunneling of Magnetization at avoided level crossings corresponding to the four nuclear spin states

Spin valve behavior Supramolecular Spin Valves M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, W. Wernsdorfer Nature Mat. 10, 502 (2011)

Device characteristics similar to V ds V g

Statistics of conductance jumps Electronic read-out of a single nuclear spin using a molecular spin-transistor R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer & F. Balestro Nature 488, 357 (2012)

Single Nuclear Spin Detection Transition matrix between two subsequent measurements

Single Nuclear Spin Detection Transition matrix between two subsequent measurements waiting time t w = 0 s t w = 20 s t w = 50 s Lifetime of the order of 10 secondes!

Project: TbPc 2 might be an excellent candidate to perform the Grover algorithm synthesis of perfectly identical SMMs different energy-level spacing observation of long energy-level lifetimes ( 10 s) The Grover algorithm with large nuclear spins in semiconductors Leuenberger, M. N. & Loss, D., Phys. Rev. B 68, 165317 (2003)

Résultats marquants et récents Molecular spin-transistor Molecular spin-valve Electronic read-out of a single nuclear spin using a molecular spin-transistor R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer & F. Balestro, Nature 488, 357 (2012) Supramolecular Spin Valves M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben & W. Wernsdorfer Nature Mat. 10, 502 (2011)

Quelques indicateurs d impact (production scientifique, brevets, recrutements ) > 100 publications > 8 joint publications > 60 joint presentations 1 thésard 5 post-docs

Merci!!

Anisotropy - molecule orientation

J3N Field sweep rate dependence Supramolecular Spin Valves 60 mt/s Crystal of 2% of TbPc2 30 mt/s 10 mt/s 3 mt/s 1 mt/s 0.3 mt/s

J3N Temperature dependence Supramolecular Spin Valves 1.0 K Crystal of 2% of TbPc2 0.8 K 0.6 K 0.4 K 0.3 K 0.2 K 0.1 K 0.04 K

energy J3N Tunneling probability at an avoided level crossing Landau-Zener model (1932) S, m' > S, m > 1 1 - P P S, m > S, m' > magnetic field

Landau-Zener tunneling probability

40 mk QTM Hysteresis loops H trans = 0.5 T

Single Nuclear Spin Detection