Goldstone bosons in the CFL phase

Similar documents
The phase diagram of neutral quark matter

Pions in the quark matter phase diagram

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

QCD at finite density with Dyson-Schwinger equations

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

arxiv:hep-ph/ v3 14 Sep 2005

QCD at finite density with Dyson-Schwinger equations

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

t Hooft Determinant at Finite Temperature with Fluctuations

QCD Phase Transitions and Quark Quasi-particle Picture

Transport theory and low energy properties of colour superconductors

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Hot and Magnetized Pions

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Can we locate the QCD critical endpoint with a Taylor expansion?

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Critical lines and points. in the. QCD phase diagram

The heavy mesons in Nambu Jona-Lasinio model

Quarksonic matter at high isospin density

The Meson Loop Effect on the Chiral Phase Transition

Hadron Phenomenology and QCDs DSEs

QCD Symmetries in eta and etaprime mesic nuclei

Phases and facets of 2-colour matter

The interplay of flavour- and Polyakov-loop- degrees of freedom

arxiv:hep-ph/ v1 7 Sep 2004

Superconducting phases of quark matter

Jochen Wambach. to Gerry Brown

arxiv: v2 [hep-ph] 8 May 2009

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

Ginzburg-Landau approach to the three flavor LOFF phase of QCD

Phenomenology of a pseudoscalar glueball and charmed mesons

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

Thermodynamics of the Polyakov-Quark-Meson Model

QCD-like theories at finite density

QCD Phases with Functional Methods

Cold and dense QCD matter

arxiv: v1 [hep-ph] 21 May 2008

Are there plasminos in superconductors?

Electric Dipole Moments and the strong CP problem

Magnetized QCD phase diagram

Neutral color superconductivity including inhomogeneous phases at finite temperature

arxiv: v1 [hep-ph] 11 Dec 2009

Tetraquarks and Goldstone boson physics

Photons in the Chiral Magnetic Effect

Distribution Amplitudes of the Nucleon and its resonances

Color-Neutral Superconducting Quark Matter. Abstract

The Quest for Light Scalar Quarkonia from elsm

Two lectures on color superconductivity

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

arxiv: v1 [hep-ph] 13 Nov 2013

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

A study of π and ρ mesons with a nonperturbative

PAPER 45 THE STANDARD MODEL

Chiral expansion of the π 0 γγ decay width

Sgoldstino rate estimates in the SHiP experiment

Spectrum of Octet & Decuplet Baryons

HLbl from a Dyson Schwinger Approach

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov

OPEN CHARM and CHARMONIUM STATES

Nature of the sigma meson as revealed by its softening process

The heavy-light sector of N f = twisted mass lattice QCD

Bethe Salpeter studies of mesons beyond rainbow-ladder

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

arxiv:hep-ph/ v2 25 Mar 1995

Axial anomaly s role on conventional mesons, baryons, and pseudoscalar glueball. Theory seminar at the ITP, Uni Giessen 20/12/2017, Giessen, Germany

Quark Model of Hadrons

Non-perturbative Study of Chiral Phase Transition

Faddeev equations: a view of baryon properties

Large-N c universality of phases in QCD and QCD-like theories

Development of a hadronic model: general considerations. Francesco Giacosa

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

PNJL Model and QCD Phase Transitions

Chiral Symmetry in the String Representation of the Large N QCD

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

towards a holographic approach to the QCD phase diagram

The scalar meson puzzle from a linear sigma model perspective

The instanton and the phases of QCD

Equation of state for hybrid stars with strangeness

The chiral anomaly and the eta-prime in vacuum and at low temperatures

arxiv: v2 [hep-ph] 18 Nov 2008

Lectures on Chiral Perturbation Theory

arxiv:hep-ph/ v1 1 Feb 2005

The Quark-Gluon Plasma in Equilibrium

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Renormalization Group Study of the Chiral Phase Transition

Pion-nucleon scattering around the delta-isobar resonance

Multiple Critical Points in the QCD Phase Diagram

Lecture 9 Valence Quark Model of Hadrons

arxiv: v1 [hep-ph] 25 Apr 2010

Transcription:

Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and QCD Phase Transitions Workshop III Rathen, October 15, 2006

Outline 1 Motivation 2 Formalism Model Method 3 Results Equal quark masses Dependence on the strange quark mass Calculation of f π 4 Summary & Outlook

Phase diagram of neutral dense quark matter [Rüster, V.W., Buballa, Shovkovy, Rischke Phys. Rev. D 72 (2005)] first order phase transition second order phase transition normal quark matter: ud = us = ds = 0 2SC phase: ud 0, us = ds = 0 usc phase: ud, us 0, ds = 0 CFL phase: ud, us, ds 0

Phase diagram of neutral dense quark matter [Rüster, V.W., Buballa, Shovkovy, Rischke Phys. Rev. D 72 (2005)] first order phase transition second order phase transition normal quark matter: ud = us = ds = 0 2SC phase: ud 0, us = ds = 0 usc phase: ud, us 0, ds = 0 CFL phase: ud, us, ds 0

Why are we interested in Goldstone bosons? chiral symmetry breaking Goldstone bosons lightest excitations: mesons effective theories predict low meson masses and meson condensation

Why are we interested in Goldstone bosons? chiral symmetry breaking Goldstone bosons lightest excitations: mesons effective theories predict low meson masses and meson condensation influence of the pseudoscalar meson condensates studied by Warringa [hep-ph/0606063]

CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q τ A : flavor space λ A : color space

CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q color-flavor locking Condensates invariant under q e iθa τa λt a 2 q τ A : flavor space λ A : color space

CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q τ A : flavor space λ A : color space color-flavor locking Condensates invariant under q e iθa τa λt a 2 q chiral symmetry breaking A not invariant under q e iθa τa 2 γ 5 q Goldstone bosons

Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )]

Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )] work in Nambu-Gorkov space ψ = 1 ( ) q 1 2 C q T, ψ = 2 ( q, q T C )

Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )] four vertices in Nambu-Gorkov space ( ) Γ ll 0 0 s = iγ 5 τ A λ A 0 ( ) Γ ll 0 0 ps =, Γ ur ps = τ A λ A 0, Γ ur s = ( ) 0 iγ5 τ A λ A 0 0 ( ) 0 τa λ A 0 0

Ingredients inverse propagator in Nambu-Gorkov space p/ + ˆµγ 0 ˆm A γ 5 τ A λ A S 1 = A=2,5,7 Aγ 5 τ A λ A p/ ˆµγ 0 ˆm A=2,5,7 scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q

Ingredients inverse propagator in Nambu-Gorkov space p/ + ˆµγ 0 ˆm A γ 5 τ A λ A S 1 = A=2,5,7 Aγ 5 τ A λ A p/ ˆµγ 0 ˆm A=2,5,7 scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q A and µ 8 derived from self-consistent solution of the CFL gap equation + neutrality conditions

Bethe-Salpeter equation Bethe-Salpeter equation = + + +... = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT

Bethe-Salpeter equation Bethe-Salpeter equation = + + +... = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT ˆT = Γ i T ij Γ j ˆV = Γ i V ij Γ j Γ i ĴΓ j = J ij

Bethe-Salpeter equation Bethe-Salpeter equation = + + +... = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT T -matrix ˆT = Γ i T ij Γ j Γ i ĴΓ j = J ij ˆV = Γ i V ij Γ j T = V + V JT = T = ( 1 V J) 1 V

Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p (2π) 4 1 2 Tr[Γ j is(p + q)γ kis(p)] p

Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p 1 (2π) 4 2 Tr[Γ j is(p + q)γ kis(p)] p applying Matsubara formalism and restriction to q = 0 q=0 ij Γ j Γ (q) = i k 2 T n d 3 p (2π) 3 1 2 Tr[Γ j is(iω n + iω m, p)γ k is(iω n, p)]

Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p 1 (2π) 4 2 Tr[Γ j is(p + q)γ kis(p)] p applying Matsubara formalism and restriction to q = 0 q=0 ij Γ j Γ (q) = i k 2 T n d 3 p 1 (2π) 3 2 Tr[Γ j is(iω n + iω m, p)γ k is(iω n, p)] only a few vertex-combinations non-vanishing J can be transformed into block-diagonal structure

Structure of T choose the basis in which J is block-diagonal V is diagonal T is block-diagonal problem can be decomposed into smaller blocks: six 2x2 blocks (correspond to π +, π, K +, K, K 0, and K 0 ) one 6x6 block (corresponds to π 0, η, and η )

Mesons ˆT couples to external meson current Γ M

Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M

Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M meson vertices Γ π ± = i «τ1 ± iτ 2 0 2 γ5 0 τ 1 iτ 2 Γ K ± = i «τ4 ± iτ 5 0 2 γ5 0 τ 4 iτ 5 Γ ( ) = i «τ6 ± iτ 7 0 K 0 2 γ5 0 τ 6 iτ 7

Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M meson vertices Γ π ± = i «τ1 ± iτ 2 0 2 γ5 0 τ 1 iτ 2 Γ K ± = i «τ4 ± iτ 5 0 2 γ5 0 τ 4 iτ 5 Γ ( ) = i «τ6 ± iτ 7 0 K 0 2 γ5 0 τ 6 iτ 7 non-vanishing combinations Γ π + Γ ll 75, Γ ur 57 Γ π Γ ll 57, Γ ur 75 Γ K + Γ ll 72, Γ ur 27 Γ K Γ ll 27, Γ ur 72 Γ K 0 Γ ll 52, Γ ur 25 Γ K0 Γ ll 25, Γ ur 52

Meson mass for equal quark masses π ±, K ±, K 0, K 0 12 10 m meson [MeV] 8 6 4 2 0 0 5 10 15 20 25 30 m q [MeV]

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 0 0 5 10 15 20 25 30 m q [MeV] prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)]

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 calculated from EFT 0 0 5 10 15 20 25 30 m q [MeV] 77.26 MeV : ) a fit 0.38 a EFT 0.58 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 35 % smaller

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 calculated from EFT 0 0 5 10 15 20 25 30 m q [MeV] 51.62 MeV : ) a fit 0.29 a EFT 0.39 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 28 % smaller

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 calculated from EFT 0 0 5 10 15 20 25 30 m q [MeV] 36.31 MeV : ) a fit 0.21 a EFT 0.27 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 23 % smaller

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 calculated from EFT 0 0 5 10 15 20 25 30 m q [MeV] 21.74 MeV : ) a fit 0.14 a EFT 0.16 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 14 % smaller

Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] 12 10 8 6 4 2 calculated from EFT 0 0 5 10 15 20 25 30 m q [MeV] 9.53 MeV : ) a fit 0.071 a EFT 0.071 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ 2 21 8 ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] deviation < 1%

Dependence on the coupling comparison with EFT 1 0.95 a calc / a EFT 0.9 0.85 0.8 0.75 0.7 0.65 0 10 20 30 40 50 60 70 80 [MeV] for weaker interaction meson masses approach the EFT result

Dependence on the strange quark mass m u = m d = 30 MeV q 0 (pole) [MeV] 50 40 30 20 10 0-10 -20-30 -40-50 π ± K -, K 0 K +, K 0 40 60 80 100 120 140 160 m s [MeV]

Dependence on the strange quark mass m u = m d = 30 MeV prediction from EFT q 0 (pole) [MeV] 50 40 30 20 10 0-10 -20-30 -40-50 π ± K -, K 0 K +, K 0 40 60 80 100 120 140 160 m s [MeV] [Bedaque, Schaefer, Nucl.Phys. A697 (2002)] q meson(pole) = µ meson + m meson q π ± (pole) = m2 d m2 u 2µ s 4A + fπ 2 m s(m u + m d ) q K ± (pole) = m2 s m 2 u 2µ s 4A + fπ 2 m d (m u + m s) q K 0, K 0(pole) = m2 s m 2 d 2µ s 4A + fπ 2 m u(m d + m s)

Dependence on the strange quark mass m u = m d = 30 MeV prediction from EFT q 0 (pole) [MeV] 50 40 30 20 10 0-10 -20-30 -40-50 π ± K -, K 0 K +, K 0 40 60 80 100 120 140 160 m s [MeV] [Bedaque, Schaefer, Nucl.Phys. A697 (2002)] q meson(pole) = µ meson + m meson q π ± (pole) = m2 d m2 u 2µ s 4A + fπ 2 m s(m u + m d ) q K ± (pole) = m2 s m 2 u 2µ s 4A + fπ 2 m d (m u + m s) r 4A f 2 π a fit 2 q K 0, K 0(pole) = m2 s m 2 d 2µ s 4A + fπ 2 m u(m d + m s)

Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 30 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] 0-1000 -2000-3000 -4000-40 -30-20 -10 0 10 20 30 40 q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 30 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] 0-1000 -2000-3000 -4000 calculated fitted -40-30 -20-10 0 10 20 30 40 q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 60 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] 0-1000 -2000-3000 -4000 calculated fitted -40-30 -20-10 0 10 20 30 40 q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 120 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] 0-1000 -2000-3000 -4000 calculated fitted -40-30 -20-10 0 10 20 30 40 q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

Meson propagators inverse π propagators inverse K propagators t π - -1 [MeV 2 ] 1000 500 0-500 -1000-1500 -2000 m s =30 MeV m s =60 MeV -2500 m s =120 MeV -40-30 -20-10 0 10 20 30 40 q 0 t K - -1 [MeV 2 ] 500 0-500 -1000-1500 -2000-2500 -3000-3500 -4000-4500 m s =30 MeV m s =60 MeV m s =120 MeV -40-30 -20-10 0 10 20 30 40 q 0

Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ 2 0 5 0 τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p)

Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ 2 0 5 0 τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p) for µ = 500 MeV, T = 0, and m u = m d = m s = 30 MeV we find f π 95.1 MeV comparison with effective theory: 21 8 ln 2 µ f π = 104.3 MeV 36 π

Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ 2 0 5 0 τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p) for µ = 500 MeV, T = 0, and m u = m d = m s = 30 MeV we find f π 95.1 MeV 9 % smaller than in EFT comparison with effective theory: 21 8 ln 2 µ f π = 104.3 MeV 36 π

Dependence on the coupling comparison with EFT f π [MeV] 105 104 103 102 101 100 99 98 97 96 95 0 10 20 30 40 50 60 70 80 [MeV] for weaker interaction f π approaches the EFT result

Summary & Outlook Summary description of mesons with diquark loops good agreement with low-energy effective theory

Summary & Outlook Summary description of mesons with diquark loops good agreement with low-energy effective theory Outlook wider range of chemical potentials finite temperature include additional interactions quark-antiquark interactions mesons in the new CFL+meson groundstate