CREOL, The College of Optics & Photonics, UCF. Anomalous Surface Plasmon Dispersion in Metallodielectric Multilayers

Similar documents
Revisiting Fresnel & refractive index. What is the refractive index of a dielectric. Metals and plasmons

Lecture 9: Introduction to Metal Optics. 5 nm

Surface plasmon waveguides

Anomalous Light Scattering by Topological PT -symmetric Particle Arrays: Supplementary Information

CMSC 313 Preview Slides

Superconductivity Induced Transparency

Based on transitions between bands electrons delocalized rather than bound to particular atom

v r 1 E β ; v r v r 2 , t t 2 , t t 1 , t 1 1 v 2 v (3) 2 ; v χ αβγδ r 3 dt 3 , t t 3 ) βγδ [ R 3 ] exp +i ω 3 [ ] τ 1 exp i k v [ ] χ αβγ , τ 1 dτ 3

Energy transport in metal nanoparticle plasmon waveguides

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0

Light trapping in thin-film solar cells: the role of guided modes

2-7. Fitting a Model to Data I. A Model of Direct Variation. Lesson. Mental Math

Lecture 10: Surface Plasmon Excitation. 5 nm

SYNCHRONOUS SEQUENTIAL CIRCUITS

ABSTRACT 1. INTRODUCTION

Invited Paper ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION

Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure -

Wave Propagation in Grounded Dielectric Slabs with Double Negative Metamaterials

Negative-Index Refraction in a Lamellar Composite with Alternating. Single Negative Layers

Collective optical effect in complement left-handed material

Dusty Plasma Void Dynamics in Unmoving and Moving Flows

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Lect. 4 Waveguides (1)

Calculus in the AP Physics C Course The Derivative

Nanophysics: Main trends

II. First variation of functionals

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

The Description of the microscopic world

Simulation of Angle Beam Ultrasonic Testing with a Personal Computer

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Lab 2: Mach Zender Interferometer Overview

Table of Common Derivatives By David Abraham

Fundamentals of fiber waveguide modes

Enhancement mechanisms for optical forces in integrated optics

Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Slow Propagation, Anomalous Absorption, and Total External Reflection of Surface Plasmon Polaritons in Nanolayer Systems

5-4 Electrostatic Boundary Value Problems

Agmon Kolmogorov Inequalities on l 2 (Z d )

One Dimensional Convection: Interpolation Models for CFD

Polynomial Inclusion Functions

Surface-Plasmon Sensors

Nanomaterials and their Optical Applications

Lecture 6: Calculus. In Song Kim. September 7, 2011

Chapter 2 Surface Plasmon Resonance

9. Dispersion relation of metal nanorods and nanotips

Part 1. The Quantum Particle

Research Article Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform

arxiv: v1 [physics.optics] 1 May 2011

25. Optical properties of materials-metal

6. The total charge will be conserved, and the final potential difference across the capacitors will be the same. Q Q Q Q C C C + C C C

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Negative Index of Refraction in Optical Metamaterials

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

PHY 114 Summer 2009 Final Exam Solutions

Nanoscale confinement of photon and electron

Microwave Reflection from the Region of Electron Cyclotron Resonance Heating in the L-2M Stellarator )

Demonstration of Near-Infrared Negative-Index Materials

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains

Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources

Calculus of Variations

Surface plasmon toy-model of a rotating black hole.

Electromagnetic Metamaterials

ECE280: Nano-Plasmonics and Its Applications. Week8

II Theory Of Surface Plasmon Resonance (SPR)

Chapter 2: One-dimensional Steady State Conduction

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Electrical and optical properties of materials

Plasmonic nanoguides and circuits

Dr. Tao Li

Lecture contents. Metal-semiconductor contact

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Nonlinear Dielectric Response of Periodic Composite Materials

Zero Group Velocity Modes of Insulator Metal Insulator and Insulator Insulator Metal Waveguides

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Surface plasmon polariton propagation around bends at a metal-dielectric interface

Negative epsilon medium based optical fiber for transmission around UV and visible region

PLASMONICS/METAMATERIALS

Nano-optics of surface plasmon polaritons

PARALLEL-PLATE CAPACITATOR

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Introduction. Chapter Optics at the Nanoscale

Surface Plasmon Interference Nanolithography

MODAL ANALYSIS OF EXTRAORDINARY TRANSMISSION THROUGH AN ARRAY OF SUBWAVELENGTH SLITS

Nanostrukturphysik (Nanostructure Physics)

Singular evanescent wave resonances in moving media

Introduction to optical waveguide modes

Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

Substrate effect on aperture resonances in a thin metal film

Photonics Beyond Diffraction Limit:

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

MATHEMATICS BONUS FILES for faculty and students

Transcription:

Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers Gray Webb-Woo an Pieter G. Kik CREOL, University of Central Floria, Orlano, FL SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Introuction Surface plasmons can provie highly confine moes at optical frequencies Short wavelength plasmons have several applications: - Nanolithography - Densely integrate optical circuits - High resolution optical microscopy metal >> > Preiction by Karalis et al. : A. Karalis et al., Phys. Rev. Lett. 9, 9 () A thin high refractive ine film on can give rise to unusual type of strongly confine plasmon with negative group velocity Theoretical stuy by Stockman : M.I. Stockman, Nano Lett., (), -8, () Negative group velocity moes are highly ampe! Question: observable?. Calculate multilayer plasmon ispersion of real materials. Simulate to evaluate feasibility of eperimental emonstration SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

Intuitive picture : origin of anomalous ispersion SP confinement epens on ω - low ω: etene moe ; high ω: confine moe ω Ag air k c + Si Ag Ag air ω ( ra/s)?..... k ( 8 m - ) ω Ag Si k c + Ag Si Ag Si Low ω: etene moe, little overlap with Si: air like ispersion High ω: highly confine moe, large overlap with Si, silicon like ispersion Question: how o these limiting cases connect? SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Calculation of surface plasmon ispersion relation Eperimentally realizable system: silver substrate, thin silicon cover layer Calculate SP ispersion relation in three layer system Boun surface plasmon moes can eist when: k z k e kz e z ikz ikz k z e kz e ikz ik z e kz e ikz ikz = vacuum silicon silver with i the ielectric function of layer i, an k z the wavevector normal to the film surface: kz i = k ω i c For fie fin zeros of the eterminant using literature ielectric functions Comple k an comple k z SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

Surface plasmon ispersion : nm Si on Ag nm Si Fast moe nm Si Slow moe ω=.8 ra/s nm ω ( ra/s) slow fast SP,ma ~ nm Note: moes to scale 8 Color scale shows H y k (m - ) Dispersion relation in layere system in between an ispersion Observation of fast moe (high v g ) an slow moe (low an negative v g ) Plasmon wavelength of ~nm at visible frequencies! (~/, re light) Single frequency: two moes possible, very ifferent level of confinement SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Surface plasmon ispersion : nm Si on Ag Determine propagation length from imaginary part of k μm nm nm Si Fast moe nm Si Slow moe nm nm nm μm ω ( ra/s) 8 k (m - ) ω ( ra/s) nm Fast moe nm Slow moe -9-8 - - - L p (m) Ma. propagation length of slow moe for =nm ~nm Question: is this sufficient to observe oscillatory nature of SP moes? SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

Surface plasmon ispersion : nm Si on Ag Plot propagation length in terms of SP wavelength: L p / SP nm Si Fast moe nm Si Slow moe ω ( ra/s) 8 ω ( ra/s) nm Fast moe nm Slow moe L p /λ SP L p /λ SP k (m - ) L p / λ SP Maimum /e slow moe propagation length for this thickness: one wavelength Net: Fin maimum propagation length of slow moe vs. Si thickness SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Surface plasmon ispersion : nm Si on Ag Repeat calculation for range of Si thicknesses Angular Frequency (ra/sec)..... = nm 8 9 Real K (/meters) Vacuum Fast Moe Slow Moe Maimum /e Intensity propagation length (meters) Maimum /e Propagation Length vs. Si Film Thickness - Slow Fast - - - - -8 Si film thickness in nm Conclusion: maimum propagation length of slow moe ~nm at Si =nm Simulate this system to evaluate feasibility of eperimental emonstration SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie 8 Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

Slow plasmon ecitation through slit Part II: evaluate viability of eperimental observation Eample system: slit in silver film on glass collection moe NSOM To etector (APD) NSOM tip μm Sample illumination Simulate slow plasmon ecitation using illumination through slit SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie 9 Frequency omain simulations Microwave stuio Minimum gri spacing: = nm y = nm z =. nm air Si (nm) Ag Two imensional frequency omain simulation Fine gri neee at sharp corners (ege of slit) an near Si film Bounary conitions simulate array of infinite slits may see staning waves SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

E ω =. ra/s k,s = 8 /m Angular Frequency (ra/sec)..... 8 9 Real K (/meters) Both slow an fast moe ecite Determine k, compare with calc. SP wavelength < analytical result Gri nees further refinement SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie E ω =. ra/s k,s =. 8 /m Angular Frequency (ra/sec)..... 8 9 Real K (/meters) SP wavelength = analytical result Wavelength of slow plasmon increases Confinement reuce SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

E ω =. ra/s k,s =. /m Angular Frequency (ra/sec)..... 8 9 Real K (/meters) SP wavelength = analytical result SP further increase confinement further reuce Fast moe has noticeably shorter SP SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie E ω =. ra/s k,s =. /m Angular Frequency (ra/sec)..... 8 9 Real K (/meters) Fast an slow moe ~similar wavelength SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE

E ω =. ra/s k,s =. /m Angular Frequency (ra/sec)..... 8 9 Real K (/meters) High frequency Ecitation near turning point Fast an slow moe: - Similar k - Group velocity ~ - Localize moe near slit Negative group velocity? SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Observation of negative phase velocity ω =. ra/s, k,s = 8 /m aa Fast SPP creates staning wave, Slow SPP ehibits negative phase velocity SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE 8

Conclusions Analytical calculations - system can lea to anomalous ispersion - Strongly confine slow plasmon preicte at visible frequencies - Maimum propagation length of slow plasmon < nm for Si = nm Numerical simulations - Illumination through slit leas to simultaneous slow an fast plasmon ecitation - Presence of slow plasmons with wavelength ~/ observe - Eperimental observation seems challenging, but feasible Future work - Evaluate slow plasmon ecitation efficiency vs. slit geometry - Attempt eperimental emonstration of slow plasmons on silver SPIE San Diego Nanophotonics an Near-fiel Optics http://kik.creol.ucf.eu slie Anomalous Surface Plasmon Dispersion in Metalloielectric Multilayers - SPIE 9