Experimental study of the hydromechanical coupling in argillaceous rocks: the example of Boom clay

Similar documents
Collaborating partners: NAGRA (CH), L3S (FR), G3S (FR), KUL (B), EPFL (CH), SOLEXPERTS (CH)

nuclear science and technology

Soil strength. the strength depends on the applied stress. water pressures are required

Experimental program in the URL

1.8 Unconfined Compression Test

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Laboratory Triaxial and Permeability Tests on Tournemire Shale and Cobourg Limestone (Contract : R413.8) FINAL REPORT

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

Constitutive modelling of the thermo-mechanical behaviour of soils

Formation and Propagation of Localized Deformation in marine clays under plane strain condition

3D simulations of an injection test done into an unsaturated porous and fractured limestone

Chapter (12) Instructor : Dr. Jehad Hamad

MODELING OF GAS MIGRATION THROUGH LOW-PERMEABILITY CLAY USING INFORMATION ON PRESSURE AND DEFORMATION FROM FAST AIR INJECTION TESTS

PHYSICO-MECHANICAL PROPERTIES OF ROCKS LECTURE 2. Contents

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Clays in Geological Disposal Systems

Integrating Lab and Numerical Experiments to Investigate Fractured Rock

Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation

Underground Storage & Disposal - The Salt Concept. Thomas Brasser - GRS

Rock visualization using micro-ct scanner and X-ray transparent triaxial apparatus

SHEAR STRENGTH OF SOIL

Investigation on the Anisotropic Mechanical Behaviour of the Callovo- Oxfordian Clay Rock

Thermo hydro mechanical coupling for underground waste storage simulations

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Supplementary Uniaxial Compressive Strength Testing of DGR-3 and DGR-4 Core

Hydro-Mechanical Modeling of a Shaft Seal in a Deep Geological Repository

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Numerical modelling of hydromechanical coupling : permeability dependence on strain path

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

Numerical investigation of EDZ development around a deep polymetallic ore mine

Laboratory Testing Total & Effective Stress Analysis

Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model

In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme

Mathematical Modelling of a Fault Slip Induced by Water Injection

Calculation of 1-D Consolidation Settlement

Instructor : Dr. Jehad Hamad. Chapter (7)

Farimah MASROURI. Professor in Geotechnical Engineering. LAEGO : Research Center In Geomechanics & Geoenvironmental Engineering

Convective drying : experimental campaign and numerical modelling

SELF-HEALING OF FRACTURES WITHIN THE EDZ AT THE MT. TERRI ROCK LABORATORY : RESULTS AFTER ONE YEAR OF EXPERIMENTAL WORK

Shear Strength of Soils

THE ROLE OF STRUCTURAL RELIABILITY OF GEOTECHNICAL BARRIERS OF AN HLW/SF REPOSITORY IN SALT ROCK WITHIN THE SAFETY CASE

Title. Author(s)Akm Badrul, Alam; Fujii, Yoshiaki; Aramaki, Noritaka. CitationProceedings of Japan Symposium on Rock Mechanics, 14

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

MECHANICAL AND HYDROMECHANICAL BEHAVIOR OF HOST SEDIMENTARY ROCKS FOR DEEP GEOLOGICAL REPOSITORY FOR. Hadj Abdi. Thesis submitted to the

Development and application of time-lapse ultrasonic tomography for laboratory characterisation of localised deformation in hard soils / soft rocks

CONSOLIDATION OF SOIL

A PRESSURE VESSEL FOR TRUE-TRIAXIAL DEFORMATION & FLUID FLOW DURING FRICTIONAL SHEAR

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents

MICRO TO MACRO ARE UK LINEAR INFRASTRUCTURE GI S SUITABLE FOR INVESTIGATING MASS SOIL PROPERTY CHARACTERISTICS?

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009

Belgian Nuclear Research Centre (SCK CEN), Institute for Environment, Health and Safety, Boeretang 200, B-2400 Mol, Belgium

Anisotropic permeabilities evolution of reservoir rocks under pressure:

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

20. Rheology & Linear Elasticity

MODELING GEOMATERIALS ACROSS SCALES

Compression and swelling. Mechanisms of compression. Mechanisms Common cases Isotropic One-dimensional Wet and dry states

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

Research Article Experimental Investigation on Creep Deformation Behavior of Medium-strength Marble Rock

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS

DEVELOPMENT OF AUTOMATIC CONTROL OF MULTI-STAGE TRIAXIAL TESTS AT THE UNIVERSITY OF MISKOLC

The process of consolidation and settlement

A micromechanical approach to describe internal erosion effects in soils

and reservoir simulation. Figure 1. Interdependence of experimental, poromechanical, and field study variables. 1 GeoFluids 2020_v2.

Desiccation Cracking of Soils

Rock Material. Chapter 3 ROCK MATERIAL HOMOGENEITY AND INHOMOGENEITY CLASSIFICATION OF ROCK MATERIAL

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3

Numerical Simulation of Unsaturated Infilled Joints in Shear

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation

Destructuration of soft clay during Shield TBM tunnelling and its consequences

Dilation occurrence analysis in gas storage based on the different constitutive models response

Rock Mechanics Laboratory Tests for Petroleum Applications. Rob Marsden Reservoir Geomechanics Advisor Gatwick

Drained Against Undrained Behaviour of Sand

Experimental study of mechanical and thermal damage in crystalline hard rock

(Refer Slide Time: 02:18)

Time Rate of Consolidation Settlement

Changes in soil deformation and shear strength by internal erosion

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Lecture 7 Constitutive Behavior of Asphalt Concrete

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA

Li Yu Eef Weetjens Xavier Sillen Tim Vietor Xiangling Li Pierre Delage Vincent Labiouse Robert Charlier

Theory of Shear Strength

Landslide FE Stability Analysis

Appendix A Results of Triaxial and Consolidation Tests

Fracture of andesite in the brittle and brittleductile transition regimes

Critical Borehole Orientations Rock Mechanics Aspects

Cite this paper as follows:

DISCUSSION ON THE PROBLEM ABOUT SATURATED LOESS DYNAMIC PORE PRESSURE BY VIBRATION

Advanced model for soft soils. Modified Cam-Clay (MCC)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

Introduction and Background

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Particle flow simulation of sand under biaxial test

Modified Cam-clay triaxial test simulations

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands

NUMERICAL MODELING OF INSTABILITIES IN SAND

Transcription:

Experimental study of the hydromechanical coupling in argillaceous rocks: the example of Boom clay Financial support of the EU: SELFRAC scientific project DIGA network Cécile Coll (GeomaC, Liège) Jacques Desrues (L3S, Grenoble) Pierre Bésuelle (L3S, Grenoble) Cino Viggiani (L3S, Grenoble) Pascal Charrier (L3S, Grenoble) W(H)YDOC 05 (23-25 Nov. 2005) 1

Outline Framework HM coupling in argillaceous rocks Boom clay : main properties Experimental techniques Experimental results Conclusions & Perspectives W(H)YDOC 05 (23-25 Nov. 2005) 2

General framework Storage of nuclear waste in deep geological formations engineered barrier storage natural barrier Safety condition : to preserve environment of internal radioactivity W(H)YDOC 05 (23-25 Nov. 2005) 3

Natural barrier (clay, crystalline rock, salt) Properties : high dimensions (100 aine meters) homogeneous no seismic activity very low permeability Function : avoid fluid circulation (radionucleides) from the waste disposal to the natural medium Issue : excavation of underground structures EDZ (Excavated Disturbed Zone) state of stress changes fissuration temperature and moisture changes W(H)YDOC 05 (23-25 Nov. 2005) 4

Natural Barrier Performance? Characterisation of the EDZ C-T-H-M coupling processes H-M coupling Argillaceous formation: Boom Clay (Mol, Belgium) Permeability evolution with time due to damaging UE project SELFRAC (Self Healing of Fractures, 2001-2004) W(H)YDOC 05 (23-25 Nov. 2005) 5

HM coupling in argillaceous rocks great complexity low to very low permeability (<10-12 m/s) saturation drainage/pore pressure homogenisation clay particles/fluid : strong interactions clay particles arrangement multiscale porosity (infra macro) consolidation swelling flows (kinetics, amplitude) W(H)YDOC 05 (23-25 Nov. 2005) 6

Boom clay (soil type) HADES Underground Research Lab. clay fraction > 55% (Mol, Belgium) w n = 25% n = 39% (agregates) k n = 2-4.10-19 m 2 highly plastic Second shaft prone to swelling self healing/sealing not cimented q c = 2 MPa c < 300 kpa ϕ = 18-24 Connecting gallery Test Drift First shaft URL Bastiaens W., Euridice report 03-294, 2003 (z = 223 m) W(H)YDOC 05 (23-25 Nov. 2005) 7

Experimental Objectives HM behaviour Isotropic / Deviatoric stress permeability Strain localisation - permeability experimental study on natural, intact & saturated specimens CD Triaxial tests (detection of strain localisation) Permeability measurement W(H)YDOC 05 (23-25 Nov. 2005) 8

Experimental techniques Experimental installation triaxial apparatus: HP cell + pressure generators local measurements of axial & radial displacements (LVDTs) system of temperature control Permeability measurement procedure W(H)YDOC 05 (23-25 Nov. 2005) 9

Experimental set up (1/4) Triaxial high pressure cell Schematic view Axial piston (q max = 270 MPa) Force gauge specimen + jacket + Confining cell HEAV porous = 60 MPa) ceramics (σ 3max Pore pressure line (bottom, U max =60 MPa) Pore pressure line (top, U max =60 MPa) U and V/V 0 controlled at both ends of the specimen W(H)YDOC 05 (23-25 Nov. 2005) 10

Experimental set up (2/4) Global view of the installation Temperature regulator (2 niveaux de régulation) Pressure Regulators p c, q, U t, U p 4 pressure generators (jacks, water or oil) Data acquisition and control W(H)YDOC 05 (23-25 Nov. 2005) 11

Experimental set up (3/4) Technical improvement : temperature control T = 25 C (+/- 0.025 C) Negligible influence of T : pore pressure volume change W(H)YDOC 05 (23-25 Nov. 2005) 12

Experimental set up (4/4) On-specimen local axial/radial strain measurements 4 radial + 3 axial LVDTs (+/- 0.005 mm) Detection of strain localisation Volumetric strain measurement W(H)YDOC 05 (23-25 Nov. 2005) 13

Permeability measurement: Motivation for an improved method Steady state method (direct method) U+ U/2 Q e + Q p = Q in measured Steady state U U- U/2 x Q s Saturated specimen (H, S) + Q p = Q out measured Q e = Q s H k = µ * Q (m 2 ) S U q volumetric strains (consolidation/swelling,dilatancy, creep, adsorption) leakages p. Triaxial compression test «Parasite» flows Influence on Q e and Q s W(H)YDOC 05 (23-25 Nov. 2005) 14

Volume (mm3) 3 ) 250 200 150 100 50 0-50 -100 U+ U/2 U- U/2 x Phase 1 : U pied < U tête p 0 = 2.3 MPa Q 1 y = -1,136x - 7,1442 R 2 = 0,9833 Q 1 in Q 1 out y = 3,3539x + 1,1652 R 2 = 0,9998 0 5 10 15 20 25 30 35 40 45 50 Time Temps (hr) (hr) Déformation volumique Volumetric strain -0,04-0,035-0,03-0,025-0,02-0,015 p 0 = 2.3 MPa Charge effective isotrope appliquée: 2,3 MPa 50 100 150 200 250 300 350 400-0,01 Temps (hr) in 3.40 mm 3 /hr Q entrant Q sortant Phase 2 Phase 1 Q 1 out 1.15 mm 3 /hr W(H)YDOC 05 (23-25 Nov. 2005) 15 Fin Q g = 0.5 mm 3 /hr x Time (hr) Q 2 out Q 2 in ε v lvdt ln(v/v 0 ) U- U/2 U U+ U/2

Improved steady state method Volume (mm3) 250 200 150 100 50 Phase 1 Phase 1 : U pied < U tête Q 1 in 3.40 mm3 /hr (top) y = 3,3539x + 1,1652 R 2 = 0,9998 Q entrant Volume (mm3) 250 200 150 100 50 Phase 2 Phase 2 : U pied > U tête Q 2 in 3.80 mm3 /hr (bottom) y = 3,8312x + 10,982 R 2 = 0,9978 Q entrant -50-100 0 0 5 10 15 20 25 30 35 40 45 50 y = -1,136x - 7,1442 R 2 = 0,9833 Time Temps (hr) Q Q 1 sortant out 1.15 mm3 /hr -50-100 0 0 5 10 15 20 25 30 35 40 45 50 y = -1,1409x + 2,032 R 2 = 0,9975 Time Temps (hr) Q sortant Q 2 out 1.15 mm3 /hr hydraulic gradient Q d =1/4*[ (Q 1 out-q 1 in)-(q 2 out-q 2 in)] others (consolidation, leakage, ) Q c = (Q 1 out+q 1 in)+(q 2 out+q 2 in) W(H)YDOC 05 (23-25 Nov. 2005) 16

Experimental study of HM behaviour of Boom Clay: Results Testing program Results volumetric behaviour under isotropic load behaviour under deviatoric load permeability evolution with p 0 and q W(H)YDOC 05 (23-25 Nov. 2005) 17

Testing program specimen: h=d=40 mm uniaxial compression test (σ 3 =0) triaxial compression (axisym.)» p 0 = p 0 -u = 0.4 ; 2; 2.3 ; 5 MPa» u = 2.2 MPa (synthetic fluid) triaxial extension (axisym.)» p 0 = 2 MPa» u = 2.2 MPa drained consolidated tests» v = 0.25 µm/min (6,25.10-6 min -1 )» v = 25 µm/min (1 test) permeability: axial direction ( strati.) d h W(H)YDOC 05 (23-25 Nov. 2005) 18

Déformation volumique lvdt Volumetric strain Isotropic consolidation Time (hr) Temps (hr) 0 100 200 300 400 500 600 700 800-0,12 BC19 p' 0 = 0,4 MPa -0,1 BC08-0,08 BC11-0,06-0,04-0,02 0 Deformation volumique lvdt Volumetric starin Time (hr) Temps (hr) 0 50 100 150 200 250 300 350 400-0,06-0,05-0,04-0,03 p' 0 = 2,3 MPa BC06 BC20b BC07-0,02-0,01 BC12 0 0,01 BC05 0,02 Deformation volumique lvdt Volumetric strain Time (hr) Temps (hr) 0 50 100 150 200 250 300 350 400-0,015 p' 0 = 2 MPa BC17-0,01 BC18-0,005 0 0,005 Volumetric Déformation volumique strain -0,035-0,03-0,025-0,02-0,015-0,01-0,005 0,01 0 Time (hr) Temps (hr) 0 100 200 300 400 500 p 0 = 3 MPa p 0 = 2 MPa p 0 = 1,5 MPa BC09 ε v fl ε v lvdt p 0 = 5 MPa ( consolidation (stress changes) swelling (physico-chemical processes) W(H)YDOC 05 (23-25 Nov. 2005) 19

Deviatoric stage (p 0 =0.4 MPa, v=0.25µm/min) 1 σ 1 -σ 3 (MPa) Déviateur (MPa) 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0-0,03 BC11-0,4 tc = 280 hr BC08-0,4 t c = 500 hr 0 0,01 0,02 0,03 0,04 0,05 0,06 Axial strain Déformation axiale ε 1 externe BC19-0,4 t c = 770 hr (a) «destructuration» during the swelling phase Déformation Volumique fl Volumetric strain -0,02-0,01 0 0,01 0,02 BC11-0,4 0 0,01 0,02 0,03 0,04 0,05 0,06 BC19-0,4 BC08-0,4 (b) Essai BC11 Essai BC08 (BC19 : strain localisation detected but no discontinuity observed) 0,03 Déformation axiale externe ε 1 externe W(H)YDOC 05 (23-25 Nov. 2005) 20

σ 1 -σ 3 (MPa) Volumetric strain Deviator stress (MPa) 2.5 2 1.5 1 0.5 BC07 t iso = 275 hr ε = 3,75.10 4 hr BC12 t iso = 160 hr ε = 3,75.10 2 hr BC20 t iso = 360 hr ε = 3,75.10 4 hr 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Axial strain ε a 0.015 0.01 0.005 0 0.005 Deviatoric stage (p 0 = 2.3 MPa) BC07 2.3 t c = 275 hr BC12 2.3 t c = 160 hr Axial strain BC07 t iso = 275 hr ε = 3,75.10 4 hr 1 BC12 t iso = 160 hr ε = 3,75.10 2 hr 1 BC20 t iso = 360 hr ε = 3,75.10 4 hr 1 BC12 2.3 t c = 160 hr BC20 2.3 t c = 380 hr BC20 2.3 t c = 380 hr Test (p 0 = 2.3 MPa) Test BC07 Test BC07 Displ. rate (um/min) Starin rate (min -1 ) BC07 0.25 6,25.10-6 BC20 0.25 BC12 25 6,25.10-6 6,25.10-4 Test BC20 Failure Non localised localised localised 0.01 BC07 2.3 t c = 275 hr 0.015 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Axial strain Test BC12 Test BC12 W(H)YDOC 05 (23-25 Nov. 2005) 21

p 0 k relation Permeability (m 2 ) Perméabilité (m 2 ) 7,05E-19 6,05E-19 5,05E-19 4,05E-19 3,05E-19 2,05E-19 BC06 BC07 BC08 BC09 BC11 BC12 BC15 BC17 BC18 BC02 (pulse) k p 0 decrease of the macropores 1,05E-19 5E-21 0,1 1 10 100 Isotropic effective stress (MPa) Contrainte effective isotrope (MPa) 2,3 MPa 0.4 < p 0 < 32 MPa k 2.10-19 m 2 6,3.10-19 < k < 1,2.10-20 m 2 W(H)YDOC 05 (23-25 Nov. 2005) 22

Relation e - k Indice des vides Void ratio 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 BC07 BC11 BC12 BC15 - charge BC18 BC20 BC15 - décharge BC18 BC17 k stress history several macroporosities? Indice des vides Void ratio 0 1E-21 1E-20 1E-19 1E-18 0,7 e 0 = 0,557 0,6 0,5 0,4 0,3 0,2 0,1 Permeability Perméabilité (m 2 ) Perform more tests at high p 0 Isotropic compression test 0-32 MPa p c 5 MPa 0 p' c 1 10 100 Isotropic effective stress p (MPa) Contrainte effective isotrope p' (MPa) W(H)YDOC 05 (23-25 Nov. 2005) 23

q k relation Axial strain 0,8 0,7 BC11 (p' 0 = 0,4 MPa) 1E-18 9E-19 Deviatoric Déviateur stress q (MPa) 0,6 0,5 0,4 0,3 0,2 0,1 Strain localisation 8E-19 7E-19 6E-19 5E-19 4E-19 3E-19 2E-19 Permeability Permébilité k (m 2 ) ) Volumetric strain Permeability (m 2 ) 0 1E-19 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 Axial strain Déformation axiale externe p 0 = 0.4 MPa p 0 = 5 MPa no significant evolution of the permeability contractancy k decreases W(H)YDOC 05 (23-25 Nov. 2005) 24

Conclusions A long experimental campaign : CD tests with permeability measurements k-measurement procedure developed Under isotropic loading swelling/consolidation coexisting physico-chemical swelling k decreases macroporosity reduction k influenced by stress history (more tests needed) W(H)YDOC 05 (23-25 Nov. 2005) 25

Conclusions HM behaviour influenced mean effective stress water content strain rate p 0 : ductile-contractant loss of strength Permeability not influenced by q and strain localisation? Global axial measurement / localised discontinuities? W(H)YDOC 05 (23-25 Nov. 2005) 26

Perspectives physico-chemical behaviour k evolution Studies at the microscale level Swelling influence of strain rate self-healing evidence Visco-élasto-plastic behaviour W(H)YDOC 05 (23-25 Nov. 2005) 27

Thank you for your attention! W(H)YDOC 05 (23-25 Nov. 2005) 28

Multi scale porosity elementary sheet stacks/particles aggregates (n>20%) laminar interlayer pores intra-aggregate pores inter-aggregate pores infra micro macro 2-5 µm fluid flows : interconnected macropores i.e. inter-aggregate porosity (free water) consolidation/swelling concerns also smallest pores (microporosity) 10 µm adsorption: interlayer porosity + chemical reactions: infra macro porosity SEM images of undisturbed Boom Clay: section perpendicular to the bedding with interstitial pores (p) (Dehandschutter et al., 2004). W(H)YDOC 05 (23-25 Nov. 2005) 29

reduced section for drainage zone with less friction limit friction drainage at both ends specimen flow lines not // between each other non homogeneous gradient porous HEA discs d=16 mm k is underestimate total drainage Modelling : correction of k W(H)YDOC 05 (23-25 Nov. 2005) 30

Overview of CD tests on Boom clay -0,04 σ 1 -σ 3 (MPa) Déformation Volumique fl Volumetric strain -0,03-0,02 BC18-2 BC11-0,4-0,01-0,06-0,04-0,02 0 0,02 0,04 0,06 0,08 0,1 0 BC12-2,3 BC19-0,4 BC20-2,3 0,01 BC07-2,3 BC08-0,4 0,02 BC09-5 0,03 Déformation axiale externe ε 1 externe Axial strain Axial strain mean effective stress p 0 : ductile-contractant HM behaviour water content strain rate loss of strength W(H)YDOC 05 (23-25 Nov. 2005) 31