The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

Similar documents
The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

With the FRG towards the QCD Phase diagram

Can we locate the QCD critical endpoint with a Taylor expansion?

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

On the role of fluctuations in (2+1)-flavor QCD

Thermodynamics of the Polyakov-Quark-Meson Model

QCD Phases with Functional Methods

Aspects of Two- and Three-Flavor Chiral Phase Transitions

QCD phase structure from the functional RG

Role of fluctuations in detecting the QCD phase transition

Renormalization Group Study of the Chiral Phase Transition

The phase diagram of two flavour QCD

t Hooft Determinant at Finite Temperature with Fluctuations

Baryon number fluctuations within the functional renormalization group approach

Chiral symmetry breaking in continuum QCD

Can we locate the QCD critical endpoint with the Taylor expansion?

QCD from quark, gluon, and meson correlators

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Non-perturbative Study of Chiral Phase Transition

arxiv: v1 [hep-ph] 2 Nov 2009

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

Probing the QCD phase diagram with higher moments

Functional renormalization group approach of QCD and its application in RHIC physics

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

The interplay of flavour- and Polyakov-loop- degrees of freedom

Sarma phase in relativistic and non-relativistic systems

Critical Region of the QCD Phase Transition

arxiv: v1 [hep-ph] 15 Jul 2013

The Flavors of the Quark-Gluon Plasma

Phase diagram of strongly interacting matter under strong magnetic fields.

Probing QCD Phase Diagram in Heavy Ion Collisions

(Inverse) magnetic catalysis and phase transition in QCD

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Chiral symmetry breaking in continuum QCD

The Phases of QCD. Thomas Schaefer. North Carolina State University

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

Polyakov Loop in a Magnetic Field

arxiv: v2 [hep-ph] 24 Sep 2007

A field theoretical model for the QCD phase transition in the early universe

Deconfinement and Polyakov loop in 2+1 flavor QCD

(De-)Confinement from QCD Green s functions

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Cold and dense QCD matter

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

Chiral symmetry breaking in continuum QCD

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Quark condensates and the deconfinement transition

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

QCD quasi-particle model with widths and Landau damping

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

PNJL Model and QCD Phase Transitions

The Phases of QCD. Thomas Schaefer. North Carolina State University

Fluctuations and QCD phase structure

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Magnetized QCD phase diagram

Phase diagram of QCD: the critical point

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Confined chirally symmetric dense matter

Spectral Properties of Quarks in the Quark-Gluon Plasma

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-lat] 26 Dec 2009

Jochen Wambach. to Gerry Brown

Functional RG methods in QCD

Model studies of the chiral and deconfinement transitions in QCD

Fluctuations and observables: volume fluctuations, critical dynamics

Confinement in Polyakov gauge

The Quark-Gluon plasma in the LHC era

QCD at finite density with Dyson-Schwinger equations

From confinement to new states of dense QCD matter

QCD-like theories at finite density

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

arxiv: v1 [hep-lat] 5 Nov 2007

Dimensional reduction near the deconfinement transition

International Workshop on QCD Green s Functions, Confinement and Phenomenology September 7-11, 2009 ECT Trento, Italy

The chiral transition in a magnetic background - finite density effec

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Phases and facets of 2-colour matter

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

QCD in an external magnetic field

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

QCD confinement and chiral crossovers, two critical points?

Termodynamics and Transport in Improved Holographic QCD

Functional renormalization group study of the phase structure in the Quark-Meson model with ω meson

Pions in the quark matter phase diagram

Heavy quark free energies and screening from lattice QCD

Kinetics of the chiral phase transition

arxiv: v1 [hep-ph] 3 May 2014

The Big Picture. Thomas Schaefer. North Carolina State University

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Locating QCD s critical end point

A theory overview on the Compressed Baryonic Matter Experiment at FAIR

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Thermodynamics. Quark-Gluon Plasma

Transcription:

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference on the Exact Renormalization Group September 12-19, 21 Corfu, Greece Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences at the Institute of Physics.

QCD Phase Structure Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores (approx.) order parameters j = symmetric qq broken Chiral Symmetry Z Nc m q chiral condensate qq Center Symmetry m q Polyakov loop Φ = l( x) β l( x) = 1 N c Tr cp exp{i Z β dτa 4( x, τ)} relation to confinement: j = Φ Φ e βfq confined deconfined

QCD Phase Structure Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores (approx.) order parameters j = symmetric qq broken Other Phases? Chiral Symmetry Z Nc m q chiral condensate qq Center Symmetry m q Polyakov loop Φ = l( x) β l( x) = 1 N c Tr cp exp{i Z β dτa 4( x, τ)} relation to confinement: j = Φ Φ e βfq confined deconfined

Polyakov-Quark-Meson Model Lagrangian L PQM = q [ i /D h(σ + iγ 5 τ π) ] q + 1 2 ( µφ) 2 U(σ, π) U(Φ, Φ) φ = (σ, π)... O(4)-representation of the meson field (N f = 2) D/ (Φ) = γ µ µ i gγ A (Φ) g... gauge coupling h... Yukawa coupling Meson Potential U(σ, π) = λ 4 (σ2 + π 2 v 2 ) 2 cσ

Polyakov Loop Potential Polynomial Ansatz [C. Ratti, M.A. Thaler, W. Weise, Phys.Rev. D73, 1419 (26)] U(Φ, Φ) T 4 = b 2(T ) Φ Φ b 3 2 6 (Φ3 + Φ 3 ) + b 4 4 (Φ Φ) 2 coefficients fitted to lattice data (pure glue): b 2 (T ) = a + a 1 T T «+ a 2 T T «2 «3 T + a 3 a a 1 a 2 a 3 b 3 b 4 6.75 1.95 2.625 7.44.75 7.5 27 MeV (pure glue)? T = 28 MeV? something else? T

T (µ) - One Motivation: Experiment experimental information on the QCD phase diagram: chemical freezeout points not raw data, but interpretation using Statistical Model increase of entropy (red band) and density suggests position of phase transition PNJL computation with T = 2 MeV inconsistent (green band) polynomial ansatz for T (µ) greater overlap (blue band) [in these plots: N c = N f = 3] [K. Fukushima, arxiv:16.2596]

T (µ) - Another Motivation: Theory [B.-J. Schaefer, J.M. Pawlowski, J. Wambach, Phys.Rev. D76, 7423 (27)] FRG flow for QCD: Talks by Jan Pawlowski and Lisa Haas t Γ k [φ] = 1 2 + 1 2 dynamical quarks modify the gluon contribution: gluons ghosts quarks mesons Polyakov Loop potential: from pure YM contribution t Γ k [φ] = 1 2 T T (N f, µ) = T τ e 1/(αb(N f,µ))

Functional Renormalization Group (FRG) Flow Equation [C. Wetterich, 1993] tγ k [ϕ] = 1 j ff 2 Tr tr k,b Γ (2,) 1 [ϕ] + R k,b k Polyakov Quark-Meson Truncation Z Γ k = j d 4 x q (D/ + µγ + ih(σ + iγ 5 τ π)) q + 1 ff 2 ( µφ)2 + Ω k [σ, π, Φ, Φ] at initial scale Λ: Ω Λ [σ, π, Φ, Φ] = U(Φ, Φ) + U(σ, π) + Ω Λ [σ, π, Φ, Φ] t Γ k [φ] = 1 2 + 1 2

Functional Renormalization Group (FRG) Flow Equation [C. Wetterich, 1993] tγ k [ϕ] = 1 j ff 2 Tr tr k,b Γ (2,) 1 [ϕ] + R k,b k Polyakov Quark-Meson Truncation Z Γ k = j d 4 x q (D/ + µγ + ih(σ + iγ 5 τ π)) q + 1 ff 2 ( µφ)2 + Ω k [σ, π, Φ, Φ] at initial scale Λ: tγk[φ] = 1 2 + 1 2 Ω Λ [σ, π, Φ, Φ] = U(Φ, Φ) + U(σ, π) + Ω Λ [σ, π, Φ, Φ] k Ω k Λ = N cn f k 4 3π 2 E q [ 1 Nq (Φ, Φ) N q (Φ, Φ) ] [J. Braun, K. Schwenzer, H.J. Pirner, Phys.Rev. D7, 8516 (24)] [V. Skokov, B. Stokic, B. Friman, Phys.Rev. C82, 1526 (21)]

PQM Flow Equation k Ω k (T, µ) = [V. Skokov, B. Stokic, B. Friman, Phys.Rev. C82, 1526 (21)] k 4 [ ( ) 3 Eπ 12π 2 coth + 1 ( ) Eσ coth E π 2T E σ 2T 2ν q E q { 1 Nq (T, µ; Φ, Φ) N q (T, µ; Φ, Φ) } ] N q(t, µ; Φ, Φ) = 1 + 2 Φe (Eq µ)/t + Φe 2(Eq µ)/t 1 + 3 Φe (Eq µ)/t + 3Φe 2(Eq µ)/t + e 3(Eq µ)/t N q(t, µ; Φ, Φ) N q(t, µ; Φ, Φ) E π = qk 2 + 2Ω k, Eσ = q k 2 + 2Ω k + 4σ2 Ω k, νq = 2NcN f

Phase Structure T = 28 MeV const. 2 15 1 5 5 1 15 2 25 3 35 [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81]

Phase Structure T = 28 MeV const. 2 15 1 5 5 1 15 2 25 3 35 [TKH, J.M. Pawlowski, B.-J. Schaefer and M. Wagner, Work in Progress]

Phase Structure T (µ), T () = 28 MeV 2 15 1 5 5 1 15 2 25 3 35 [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81]

Normalized Pressure [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] 2 2 15 15 1 5 5 1 15 2 25 3 35 1 5 5 1 15 2 25 3 35 1.2 1.3 µ = MeV µ = 15 MeV µ = 29 MeV 1.2 1.3 µ = MeV µ = 15 MeV µ = 29 MeV p/p SB.8.6 25 5 p/p SB.8.6 25 5.4.4.2.2 5 1 15 2 25 3 35 5 1 15 2 25 3 35

Normalized Pressure [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] [B.-J. Schaefer, J.M. Pawlowski, J. Wambach, Phys.Rev. D76, 7423 (27)] 2 15 1 5 5 1 15 2 25 3 35 1.8 µ = MeV µ = 15 MeV µ = 29 MeV p/p SB.6.4.2 5 1 15 2 25 3 35

Normalized Entropy Density [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] 2 2 15 15 1 5 5 1 15 2 25 3 35 1 5 5 1 15 2 25 3 35 1.8 µ= MeV µ=15 MeV µ=29 MeV 1.8 s/s SB.6.4 s/s SB.6.4.2 5 1 15 2 25 3 35.2 µ= MeV µ=15 MeV µ=29 MeV 5 1 15 2 25 3 35

Quark Number Density [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] 2 2 15 15 1 5 5 1 15 2 25 3 35 1 5 5 1 15 2 25 3 35 2 15 µ=15 MeV µ=29 MeV 2 15 µ=15 MeV µ=29 MeV n q /T 3 1 n q /T 3 1 5 5 5 1 15 2 25 3 35 5 1 15 2 25 3 35

Vicinity of the [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] 2 2 15 15 1 5 5 1 15 2 25 3 35 1 5 5 1 15 2 25 3 35.8.7.6 T<T T=T T>T.8.7.6 T<T T=T T>T.5.5 n q /µ 3.4.3 n q /µ 3.4.3.2.2.1.1 288 29 292 294 296 298 288 29 292 294 296 298

Vicinity of the [TKH, J.M. Pawlowski, B.-J. Schaefer, arxiv:18.81] 2 2 15 15 1 5 5 1 15 2 25 3 35 1 5 5 1 15 2 25 3 35 14 12 1 T<T T=T T>T 14 12 1 T<T T=T T>T χ q /µ 2 8 6 χ q /µ 2 8 6 4 4 2 2 288 29 292 294 296 298 288 29 292 294 296 298

Summary PQM model beyond Mean Field quark-meson fluctuations included within FRG approach Important feature: back-reaction to gluonic sector T T (N f, µ) Modifications of the Phase Structure fluctuations push downwards T (µ): chiral and deconfinement transitions coincide no quarkyonic phase Thermodynamics agree well with lattice studies at µ = 2 15 1 5 5 1 15 2 25 3 35