Selective Oxidation of Methane to Methanol in Oleum over Pd/ C Catalyst. WEI Xin, YE Linmin, ZHU Mingxia, YUAN Youzhu 3

Similar documents
Application of Halogens as Catalysts of CH 4 Esterification

Electronic Supplementary Information (ESI)

Supporting Information

Pt-catalyzed oxidative carbonylation of methane to acetic acid in sulfuric acid

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Methane oxidation to acetic acid catalyzed by Pd 2+ cations in the presence of oxygen

Supporting Information

Supporting Information

Supporting Information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Supporting Information

Electronic Supplementary Information. Alcohols

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Supporting Information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Direct Methane Oxidation over Pt-modified Nitrogen-Doped Carbons

Supplementary Information for

Supporting Information

Shape-selective Synthesis and Facet-dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Pt-Pd Tetrahedrons and Cubes

unique electronic structure for efficient hydrogen evolution

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2

Supporting Information

Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst

1. Supplementary Materials and Methods

Supporting Information

Supporting Information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Supporting Information

Supporting Information

Supporting Information

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Facile and selective hydrogenolysis of β-o-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO 2

Supporting Information

Role of Re and Ru in Re Ru/C Bimetallic Catalysts for the

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Acetylene hydrochlorination over 13X zeolite. catalyst at high temperature

Supporting information. Porous Graphene-based Material as an Efficient Metal Free. Catalyst for the Oxidative Dehydrogenation of Ethylbenzene

Supporting Information

Direct Catalytic Conversion of Methane

Please do not adjust margins. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning

Supporting Information for:

Characterization of partially reduced graphene oxide as room

Supporting Information:

Electronic Supplementary Information

Supporting Information

Supporting Information

Electronic Supplementary Information

Hollow ceramic fiber supported ZIF-8 membrane with enhanced. gas separation performance prepared by hot dip-coating seeding

Supporting Information:

bifunctional electrocatalyst for overall water splitting

Supporting Information

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis

Metal-Organic Framework Immobilized Cobalt Oxide Nanoparticles

PETROCHEMICAL TECHNOLO GY. 99 %) Pd/ C, 2,7 - - Al 2 O 3 ] TQ [ , Angilent

Efficient enantioselective hydrogenation of quinolines catalyzed by conjugated microporous polymers with embedded chiral BINAP ligand

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Electronic supplementary information for Chemical Communications

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Supplementary Material. Direct methane conversion to methanol by ionic liquids dissolved platinum catalysts

Supporting Information

Study on the Selective Hydrogenation of Nitroaromatics to N-aryl hydroxylamines using a Supported Pt nanoparticle Catalyst

Highly Efficient and Robust Au/MgCuCr 2 O 4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde

Cu-Catalyzed Synthesis of 3-Formyl imidazo[1,2-a]pyridines. and Imidazo[1,2-a]pyrimidines by Employing Ethyl Tertiary

One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation

: O646 : A (DFAFC),,,, DFAFC. PdCl 2, Pd2NH 3, H 2. CO 2,. : Pd, Vol. 15 No. 4 Nov ELECTROCHEM ISTRY : (2009)

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

: : O : A. ; 8511A TOL EDO 320 p H. A. R. Vol. 7 No. 3 Aug EL ECTROCHEMISTR Y : (2001) (1.

Supporting Information. Oxidation Catalyst. Jingqi Guan, Chunmei Ding, Ruotian Chen, Baokun Huang, Xianwen Zhang, Fengtao

Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst

Supporting Information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

Electronic Supplementary Information for:

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction

Supporting Information

High Fenton Catalytic Efficiency from Enhanced Fe 3+ Reduction

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

Supporting Information

Supporting Information

Mechanically Strong and Highly Conductive Graphene Aerogels and Its Use as. Electrodes for Electrochemical Power Sources

Supporting Information. Unique Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Using Reduced Catalysts for Oxidation Reactions: Mechanistic Studies of the Periana-Catalytica System for CH 4 Oxidation

Supporting Information. Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Supporting Information. Selective Semihydrogenation of Alkyne to Olefin

Electronic Supplementary Information

Transcription:

29 8 2008 8 Vol. 29 No. 8 Chi nese Jou rnal of Catalysis August 2008 : 025329837 (2008) 0820720207 : 720 726 Pd/ C,,, (,, 361005) : PdCl 2, Pd/ C,, X X CO., 5 %Pd/ C Pd 30 mol 180 410 MPa 4 h SO 3 50 %, 2316 %, 6915 % 1614 %,. Pd/ C, Pd Pd. : ; ; ; ; ; ; : O643/ TQ54 : A Selective Oxidation of Methane to Methanol in Oleum over Pd/ C Catalyst WEI Xin, YE Linmin, ZHU Mingxia, YUAN Youzhu 3 ( S tate Key L aboratory of Physical Chemist ry of Solid S urf aces, Depart ment of Chemist ry, College of Chemist ry and Chemical Engineering, Xiamen U niversity, Xiamen 361005, Fujian, China) Abstract : The selective oxidation of methane to methanol over Pd/ C catalysts generated from a PdCl 2 precursor was investigated in oleum. Characterization of t he catalyst s was performed by X2ray diff raction, X2ray photo2 elect ron spect roscopy, high2resolution t ransmission elect ron microscopy, and CO adsorption. The major product in the oxidation reaction was methyl bisulfate, which was then hydrolyzed into methanol. Methane conversion of 2316 % with methanol selectivity of 6915 % and yield of 1614 % was achieved under the optimum conditions of 5 %Pd/ C, 30 mol Pd, reaction temperature 180, methane pressure 410 MPa, reaction time 4 h, and 50 % sulfur trioxide concentration. After facile separation with the reactants and pretreatment, the catalyst could be reused several times wit h considerable stability. The selective oxidation of met hane catalyzed by Pd/ C catalyst s in oleum possibly involved an elect rophilic substit ute mechanism. The catalytic performance was related to t he Pd loading, dispersion, and particle size. Key words : palladium ; activated carbon ; supported catalyst ; methane ; selective oxidation ; methanol ; oleum,.,,. 1969 Gol dshleger [1 ], [2 8 ],. 1987, Shilov [9 ] : 2008203207. :. Tel : (0592) 2184565 ; E2mail : yzyuan @xmu. edu. cn. : (20473065) ; (2005HZ0123).

8 : Pd/ C 721 Pd / Pd. Kao [10 ] Shilov, 1 %. 1994, Lin [11 ] RhCl 3,. Yuan [12 ], OsCl 3 ( TOF) 12 h - 1. 1993, Catalytica Periana [13 ],, 43 %., 81 %, 90 % [14 ],. [15 20 ],, Pd [15 ] PdSO 4 [15 ] [21 ] [22 ] [23 ] [24 ].,. Pd/ C,,, X ( XRD) X ( XPS) CO ( HRTEM),. 1 1. 1 Pd/ C, : (, ) 6 h,, 20 40 ; PdCl 2 (, ),, p H = 4,, 100., 5 %H 2 / Ar 200 4 h, 3 / min. x Pd/ C( x ). 1. 2 20 ml, 50 % ( ),, 5 %Ne/ CH 4 ( 9919 %, ), 4 MPa,., ;, 20, 90 3 h,. Bruker AVANCE 400 MHz. GC2 8A, TCD, 5A (3 m) Porapak2Q (3 m) ; GC2920, FID, SE254 ( 50 m 0125 mm 0125 m). Ne. 1. 3 XRD Philips PANalytical X pert PRO X, : Cu K ( = 01154 18 nm), 40 kv, 30 ma., 01016 7 /, 10 90, 10 s. HRTEM Philips FEI Tecnai 30, 300 kv, 011 nm, 012 nm, 0114 nm. IRIS IN2 TREPID II XSP RADIAL (ICP2AES), 1 150 W, 28 psi, 5 s, 10 s. CO ASAP 2010M + C, 200 1 h, 011 g, 150 3 h, CO, 30 Pd. XPS Physical Elect ronics Quant um22000 Scanning ESCA Micro2 probe, Mg K X (1 25317 ev), 50 ev, C 1s ( E b = 28416 ev). 2 2. 1 Pd/ C,,

722 29 Ne, CO 2 ; 1 H NMR ( = 3190),. 1 13 C NMR,,, H 2 C(OSO 3 H) 2. Michalkiewicz [15 ],,, H 2 C(OSO 3 H) 2., H 2 C(OSO 3 H) 2,,,,. 1 (, )., 5 %Pd/ C 2,, Pd/ C,,.,, 5 %,. :,,,,,,, ;,,,, 1 Pd/ C 13 C NMR Fig 1 13 C NMR spectrum of the crude reaction mixture of selec2 tive oxidation of methane in oleum over Pd/ C catalyst,, 5 %. TOF,, TOF,,., 915 %, CO 2 2119 %, 7210 % 618 %,,., 5 %Pd/ BaSO 4 (, ),,,., Pd/ C. 1 Table 1 Results of selective oxidation of methane catalyzed by supported Pd catalysts Catalyst Pd dispersion ( %) CH 4 conversion ( %) Selectivity ( %) CH 3 OH CO 2 CH 3 OH yield ( %) TOF (h - 1 ) Blank 0. 5 0. 0 0. 0 0. 0 Activated carbon 0. 4 0. 0 100 0. 0 Pd black 0. 3 10. 3 80. 1 9. 9 8. 3 17 1 %Pd/ C 42. 9 9. 6 71. 9 21. 7 6. 9 71 2 %Pd/ C 25. 2 17. 3 68. 8 22. 0 11. 9 62 5 %Pd/ C 21. 6 23. 6 69. 5 20. 6 16. 4 34 5 %PdCl 2 / C 9. 5 72. 0 21. 9 6. 8 14 5 %Pd/ BaSO 4 30. 4 72. 7 17. 3 22. 1 46 10 %Pd/ C 16. 9 31. 8 57. 9 27. 8 18. 4 19 Reaction conditions : catalyst = 6415 mg ( Pd black = 312 mg, 30 mol), 50 % SO 3 oleum = 5 ml, reaction time = 4 h, reaction temperature = 180, methane pressure = 410 MPa. TOF : turnover frequency, in mole of methanol yield per mole of Pd per hour.

8 : Pd/ C 723 Pd/ C, 5 %Pd/ C, 2.,,,,,, 1. 2 5 %Pd/ C Table 2 Effects of reduction temperature on Pd particle size and catalytic performance of 5 %Pd/ C catalyst Reduction temperature ( ) Particle size (nm) CH 4 conversion ( %) Selectivity ( %) CH 3 OH CO 2 CH 3 OH yield ( %) 200 5. 8 30. 0 65. 3 24. 7 19. 6 300 6. 6 26. 6 70. 0 20. 0 18. 6 400 7. 8 25. 2 71. 5 18. 5 18. 0 Reaction conditions are the same as in Table 1. 2. 2 5 %Pd/ C,, 2. 2 (a),,,. 2 (b),,, 60 %., [4 ],, ;,. 2 (c),,,, 5 h, 4711 %.,,., 50 %SO 3, : 5 %, 4 MPa, 180, 4 h., 2316 %, 6915 %, 1614 % ( 1). 2. 3, Pd/ C,,. 3 5 %Pd/ C., 5 %Pd/ C,. 6415 mg, 4 5 mg, 3,,,., ICP- AES., 1, 111 % (01035 mg Pd), 3 011 % 012 %., 1 mg PdSO 4 2H 2 O ( 13 ), 1, 2 5 %Pd/ C Fig 2 Effects of reaction temperature (a), methane pressure (b), and reaction time (c) on selective oxidation of methane over 5 %Pd/ C catalyst (1) Conversion, (2) Methanol selectivity, (3) CO 2 selectivity (Reaction conditions are the same as in Table 1. )

724 29 3 5 %Pd/ C Fig 3 Recycle of 5 %Pd/ C catalyst in selective oxidation of methane to methanol in oleum (Reaction conditions are the same as in Table 1. ) : 314 %, CO 2 2010 % 6110 %, 211 %. 5 %Pd/ C,,. 2. 4 4 5 %Pd/ C 4 XRD., 4, 4,. 5 5 %Pd/ C 4 HRTEM., 4 7 nm, ; 4,, 20 70 nm. 4 5 %Pd/ C XRD Fig 4 XRD patterns of 5 %Pd/ C catalyst before and after reaction (1) Before reaction, (2) After four recycles,,,., Pd/ C. 6 5 %Pd/ C XPS., 33417 34012 ev Pd 0 3 d 5/ 2 3 d 3/ 2, 33710 34210 ev Pd 2 + 3 d 5/ 2 3 d 3/ 2., Pd 2 +, ;, Pd 0 3 d 5/ 2, Pd 2 +, Pd 0 / Pd 2 +. 5 5 %Pd/ C Fig 5 HRTEM images of 5 %Pd/ C catalyst before and after reaction (a) Before reaction, (b) After four recycles

8 : Pd/ C 725 3 Pd/ C. 5 % Pd/ C, 2316 %, 1614 %. Pd/ C.,,.. 6 5 %Pd/ C Pd 3 d XPS Fig 6 Pd 3 d XPS spectra of 5 %Pd/ C catalyst before and after reaction (1) Before reaction, (2) After four recycles 2. 5, Shilov [2 ] Michalkiewicz [15 ] Pd/ C Pd 0 SO 3 Pd 2 +,, CH - 3 - Pd 2 +. H 2 SO 4, CH 3 OSO 3 H, Pd 2 + Pd 0., Pd/ C, 1., Pd 0 SO 3 Pd 2 +, Pd/ C SO 3,. 1 Pd/ C Scheme 1 A possible mechanism for selective oxidation of methane catalyzed by Pd/ C in oleum 1 Gol dshleger N F, Tyabin M B, Shilov A E, Shteinman A A. Zh Fiz Khim, 1969, 43 (8) : 2174 2 Shilov A E, Shul pin G B. Chem Rev, 1997, 97 ( 8) : 2879 3 Sen A. Acc Chem Res, 1998, 31 (9) : 550 4 Labinger J A, Bercaw J E. N ature, 2002, 417 (6888) : 507 5 Michalkiewicz B, Kalucki K. Chem Pap, 2003, 57 (6) : 393 6 Periana R A, Bhalla G, Tenn W J, Young KJ H, Liu X Y, Mironov O, Jones C J, Ziatdinov V R. J Mol Catal A, 2004, 220 (1) : 7 7 Michalkiewicz B. Chem Pap, 2006, 60 (5) : 371 8 Conley B L, Tenn W J, Young K J H, Ganesh S K, Meier S K, Ziatdinov V R, Mironov O, Oxgaard J, Gonza2 les J, Goddard W A, Periana R A. J Mol Catal A, 2006, 251 (122) : 8 9 Shilov A E, Shul pin GB. R uss Chem Rev, 1987, 56 (5) : 442 10 Kao L C, Hutson A C, Sen A. J A m Chem Soc, 1991, 113 (2) : 700 11 Lin M R, Sen A. N ature, 1994, 368 (6472) : 613 12 Yuan Q, Deng W P, Zhang Q H, Wang Y. A dv S ynth Catal, 2007, 349 (7) : 1199 13 Periana R A, Taube D J, Evitt E R, Loffler D G, Wen2 trcek P R, Voss G, Masuda T. Science, 1993, 259 : 340 14 Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fuji H. Science, 1998, 280 : 560 15 Michalkiewicz B, Kalucki K, Sosnicki J G. J Catal, 2003, 215 (1) : 14 16 Jones C J, Taube D, Ziatdinov V R, Periana R A, Nielsen R J, Oxgaard J, Goddard W A. A ngew Chem Int Ed, 2004, 43 (35) : 4626

726 29 17 Mukhopadhyay S, Zerella M, Bell A T. A dv Synth Catal, 2005, 347 (9) : 1203 18,,,,. (Zou M, Yan N, Hou S C, Xiao Ch X, Kou Y. Chin J Catal), 2005, 26 (8) : 669 19 Kua J, Xu X, Periana R A, Goddard W A. Organometallics, 2002, 21 (3) : 511 20 Mukhopadhyay S, Bell A T. Chem Com m un, 2003, (13) : 1590 21 Periana R A, Mirinov O, Taube D J, Gamble S. Chem Com m un, 2002, (20) : 2376 22,,,,. ( Yin G Ch, Xi Z W, Cao G Y, Zhang X F, Li M. Chin J Catal), 1997, 18 (5) : 402 23,,,. ( Zhang X Ch, Cao K, Chen L Y, Han Y Y. Pet rol Technol ), 2004, 33 (9) : 813 24,,,,. (Chen L Y, Yang B L, Zhang X Ch, Dong W, Zhang X P. Chin J Catal), 2006, 27 (6) : 462, 2008, 29 (7) : 592 594 a &b T ( :,,,,, ) 2 (d), 2 (d) 2 (a) (c)..