Molecular Spectroscopy. H 2 O e -

Similar documents
Ultraviolet Spectroscopy. CH- 521 Course on Interpreta2ve Molecular Spectroscopy; Course Instructor: Krishna P. Kaliappan

Advanced Pharmaceutical Analysis

Infrared Spectroscopy

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

Application of IR Raman Spectroscopy

1.1. IR is part of electromagnetic spectrum between visible and microwave

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Spectroscopy

General Infrared Absorption Ranges of Various Functional Groups

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

Electronic Excitation by UV/Vis Spectroscopy :

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

Infrared Spectroscopy

UV Spectroscopy: Empirical Approach to Molecular Structures. Dr. Mishu Singh Department of Chemistry M. P.Govt P. G.

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups

Molecular Spectroscopy

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Instrumental Chemical Analysis

Learning Guide for Chapter 3 - Infrared Spectroscopy

UV / Visible Spectroscopy. Click icon to add picture

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Instrumental Chemical Analysis

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

Infrared Spectroscopy: Identification of Unknown Substances

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

Symmetric Stretch: allows molecule to move through space

Spectroscopy may be defined as the study of interaction between electromagnetic radiations and matter.

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Spectroscopy. Fourier Transform Infrared (FT-IR) Spectroscopy

Infra Red Spectroscopy

A very brief history of the study of light

Look for absorption bands in decreasing order of importance:

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

Instrumental Chemical Analysis

Ultraviolet-Visible Spectroscopy

Electronic Excitation by UV/Vis Spectroscopy :

Lecture 13 Organic Chemistry 1

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY

Infra-red Spectroscopy

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

Infrared Spectroscopy

(2) Read each statement carefully and pick the one that is incorrect in its information.

Welcome to Organic Chemistry II

09/05/40 MOLECULAR ABSORPTION METHODS

CH 3. mirror plane. CH c d

1. Which compound would you expect to have the lowest boiling point? A) NH 2 B) NH 2

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

6. CHARACTERIZATION OF AS (III) IONS BIOSORPTION BY THE LIVE, HEAT AND ALKALINE- TREATED FUNGAL BIOMASS ON THE BASICS OF SURFACE STUDIES

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Electronic Excitation by UV/Vis Spectroscopy :

C h a p t e r F o u r t e e n: Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Educational experiment package Volume 1. Molecular spectroscopy

Terms used in UV / Visible Spectroscopy

William H. Brown & Christopher S. Foote

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

Infrared Spectroscopy

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. IR spectroscopy AFB QO I 2007/08 1 AFB QO I 2007/08 2

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule

Answers to Assignment #5

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes *

Homework Assignment #3

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

ORGANIC SPECTROSCOPY NOTES

Learning Guide for Chapter 3 - Infrared Spectroscopy

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

Chemistry 3720 Old Exams. Practice Exams & Keys

How to Interpret an Infrared (IR) Spectrum

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

two slits and 5 slits

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy

Vibrations. Matti Hotokka

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Ch 313 FINAL EXAM OUTLINE Spring 2010

Infrared spectroscopy Basic theory

25 Instruments for Optical Spectrometry

Vibrational Spectroscopy

Chemistry 343- Spring 2008

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

levels. The signal is either absorbance vibrational and rotational energy levels or percent transmittance of the analyte

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Advanced Analytical Chemistry

Lecture 0. NC State University

Spektroskopi Molekul Organik

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III

IR absorption spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

Transcription:

Molecular Spectroscopy ν (cm -1 ) λ (cm) 10 6 10 8 10 10 10 12 10 14 10 16 10 18 10 20 10 22 ν (Hz) NMR ESR microwave IR UV/Vis VUV X-Ray Gamma Ray H 2 e -

UV/Vis Spectroscopy absorption technique X hν * Y Y Z X Z e - e -

UV UV(B) UV(A) visible 180 300 400 500 600 700 E = hν c = λν λ (nm) If a molecule absorbs a photon at 400 nm, how much energy is absorbed by the molecule? E = ν 6.626068 10 c hc = E = λ λ -34 J s x 299792458m s -9 400 10 m -1 = 5 10-19 J 5 x 10-19 J/molecule 6.022141 x 10 23 molecules/mol = 300 kj/mol

Single beam hν I o Instrumentation I source grating slit sample cell detector (pmt) mirror I hν I o Double beam chopper ref. cell

Source: visible work (380-2500 nm) uses a tungsten filament UV (160-400 nm) uses a deuterium lamp Monochromator: prism or grating 510 ±0.5 nm intensity λ 507 508 509 510 511 512 513 wavelength (nm)

absorbance absorption band of holmium oxide 'monochromatic light' 435 440 445 450 455 wavelength (nm) Sample cells: cuvettes with path lengths of 0.1, 1.0 and 10.0 cm quartz (180-1100 + nm) glass (375-1100 nm) plastic (350 nm)

Detectors: photomultiplier tube (pmt) ++ e - +++ e - e - hν + anode +++++

λ = 510 nm hν I o I %T = I/I o A = -log T T = 100 % A = 0 T= 50 % A = 0.30 T = 10 % A = 1 T = 1 % A = 2 T = 0.1 % A = 3

For a specific λ, Beer-Lambert Law A = εbc ε is molar absorptivity (L mol -1 cm -1 ) b is pathlength of cell (cm) c is concentration of analyte (M) A T = A 1 + A 2 +... = ε 1 bc 1 + ε 2 bc 2 +... Where and why UV-Vis spectroscopy is used... - easily quantifiable and good sensitivity - inexpensive and fast - reasonably selective

- sensitive, 10-4 to 10-7 M (depends on ε and b) - accurate (1 to 5 %) Experimental Considerations 1. Verify that A = εbc is linear by checking the calibration curve. 2. Calibration standards should match matrix of samples with respect to T, ph, and interferences I o I - reflection - scattering - absorbance due to cell and solution - absorbance due to analyte

3. Select λ as λ max for sensitivity and accuracy. A = ebc da is a minimum dλ wavelength (nm) A = εbc λ max 4. Calibrate A and λ 5. λ small wrt absorption band 6. Record absorbances from 0.1 to 1.5

A = εbc = log T c log T = 1 εb c = log e T 2 εb T 2 1 c c = log e T εbt log T εb = log e T T log T sc c = log e s T log T T If A = 1, T = 0.10 and s T = 0.003 then sc log e st s = c = c T log T c log e 0.003 0.10 log(0.10) = 1.3% s c A = 2, = 6.5% c

sc c log e st = shows a minimum when T = 1/e = 0.37 or A = 0.43 T log T Sc/c 35% 30% 25% 20% 15% 10% 5% 0% 0 1 A 2 3 Sc/c 8% 7% 6% 5% 4% 3% 2% 1% 0% 0 0.5 1 A 1.5 2 0.1<A<1.5

E 1 * E E o λ λ λ

0.9 0.7 A 0.5 0.3 B C 0.1-0.1 210 260 310 wavelength (nm) A benzene in vapour phase, res. = 0.2 nm B benzene in vapour phase, res. = 0.5 nm C acetone in hexane A

A 1.4 1.2 1 0.8 0.6 0.4 0.2 0 400 500 600 wavelength (nm) A I 2 in gas phase B I 2 in CH 2 Cl 2 B A

Transition metal complexes - spectra are complex d x y d 2 z 2 2 d xy d yz d xz E 2.4 1.9 Cu 2+ in water A 1.4 0.9 0.4-0.1 300 500 700 900 1100 wavelength (nm)

1.0 0.8 A 0.6 0.4 A 0.2-0.1 B 300 500 700 900 1100 wavelength (nm).... A [(H 2 ) 5 Fe-S=C=N].. 2+ [(H 2 ) 5 Fe-S=C=N].. 2+.... B Fe(phen) 2+ 3 Fe(phen) 2+.... 3 (MLCT).... + - - + (LMCT)

2 1.5 Ho 2 3 A 1 0.5 0 250 450 650 850 wavelength (nm)

σ * π * n π σ E = hc λ σ σ * CH 4 λ max = 125 nm n σ *.. CH 3 H.. λ max = 150-250 nm, ε = 100-3000 M -1 cm -1 H 2 λ max = 167 nm Me 3 N λ max = 227 nm CH 3 I λ max = 258 nm

π π * alkenes, alkynes, carbonyls λ max 170-190 nm H 2 C=CH 2 λ max = 171 nm ε = 15000 M -1 cm -1 n π * λ max 280 nm ε 10-100 M -1 cm -1 σ * π * n π σ A 2.9 2.4 1.9 1.4 0.9 0.4-0.1 π π * λ max = 189 nm ε = 900 M -1 cm -1 H 3 C C CH 3 190 240 290 340 390 wavelength (nm).... n π * λ max = 280 nm ε = 12 M -1 cm -1

σ * π * n π σ.. Chromophores: N, C=C, C=Ȯ... Auxochromes.. C=Ọ. X ε hyperchromic shift ε hypochromic shift λ bathochromic or red shift λ hypsochromic or blue shift λ max (π π * ) (nm) ε (M -1 cm -1 ) 181 13,800 181 14,100 178 17,000 224 22,900 258 43,700

λ max (n π * ) (nm) ε (M -1 cm -1 ) 278 30 324 24 R 2 C C H R - R 2 C C H + R H H C C H H H C H - H H H C C H C H+ H

Solvents: should be pure and transparent in region of interest Solvent Cutoff (nm) Solvent Cutoff (nm) H 2 180 cyclohexane 200 CH 3 H 205 CH 3 CN 180 hexane 200 acetone 330 0.75 0.55 acetone A 0.35 0.15-0.05 200 225 250 275 300 325 350 wavelength (nm)

Polar solvents can broaden absorption bands λ max can shift......... H H blue shift for the n π * transition H 3 C CH 3 red shift for the π π * transition X Z Y solvent X Z Y solvent X Y Z solvent X Y Z

transoid cisoid λ max = 217 nm λ max = 250 nm ε = 21,000 M -1 cm -1 ε is lower Table 6.5 Empirical Rules for Dienes Parent Homoannular Heteroannular (cisoid) λ = 253 nm (transoid) λ = 214 nm Increments for: double bond extending conjugation 30 30 alkyl substituent or ring residue 5 5 exocyclic double bond 5 5 polar groupings: -CCH 3 0 0 -R 6 6 -Cl, -Br 5 5 -NR 2 60 60

A B C D λ max = 214 nm (exp. = 217 nm) λ max = 229 nm (exp. = 228 nm) λ max = 234 nm (exp. = 235 nm) λ max = 353 nm (exp. = 355 nm) H 3 C Parent Homoannular Heteroannular (cisoid) λ = 253 nm (transoid) λ = 214 nm Increments for: double bond extending conjugation 30 30 alkyl substituent or ring residue 5 5 exocyclic double bond 5 5 polar groupings: -CCH 3 0 0 -R 6 6 -Cl, -Br 5 5 -NR 2 60 60

.... C X π π *, λ 190 nm n π *, λ 280 nm Carbonyls As X becomes more electronegative, the n π * transition shifts to the blue. H 3 C C CH 3 λ max = 279 nm ε = 15 M -1 cm -1 H 3 C C NH 2 λ max = 214 nm ε = low H 3 C C H λ max = 204 nm ε = 41 M -1 cm -1...... C NR2.. -.... C + NR2 Red shift of the π π * transition

C R δ β C R γ α Base values six-membered ring/acyclic enone 215 nm five-membered ring 202 acylic dienone 245 Substituent Position α β γ δ double bond in conjugation 30 alkyl group/ring residue 10 12 18 18 -H 35 30 50 -CCH 3 6 6 6 -CH 3 35 30 17 31 -Cl 15 12 -Br 25 30 -NR 2 95 exocyclic double bond 5 homocyclic diene 39

λ max = 249 nm (exp. = 249 nm) λ max = 302 nm (exp. = 300 nm) Base values six-membered ring/acyclic enone 215 nm five-membered ring 202 acylic dienone 245 Substituent Position a b g d alkyl group/ring residue 10 12 18 18 -H 35 30 50 -CCH 3 6 6 6 -CH 3 35 30 17 31 -Cl 15 12 -Br 25 30 -NR 2 95 double bond in conjugation 30 exocyclic double bond 5 homocyclic diene 39

l max (nm) (e M -1 cm -1 ) primary secondary 184 (60,000) 204 (7400) 254 (204) CH 3 207 (7000) 261 (300) CH 3 263 (300) Cl.. CH 3...... -.... + + NH 3.... C N...... -........ H 210 (7600) 265 (240) 235 (9400) 287 (2600) 203 (7500) 254 (160) 230 (11,600) 273 (970) 269 (7800)

E 1 * E E o UV-Vis IR E o ν ν

100 90 80 70 %T 2560 2360 wavenumber (cm-1) 2160 60 IR spectra of HBr (g) and polystyrene

H v o v hν 1 Br H Br r o r 1 hν H H H H θ o θ 1

1cm 1 = 1 wavenumbe r, ν, = 1 1cm ν = 1 λ If ν = 4000 cm -1-1 4000 cm 1 λ = λ = 0.00025 cm = 2500 nm E = hν c = λν ν = c λ E = hc λ E = 6.626068 10 J s x 299792458 m -9 2500 10 m -34 s -1 = 7.95 10 20 J 7.95 x 10-20 J/molecule 6.022141 x 10 23 molecules/mol = 45 kj/mol

ref. cell mirror I r mirror sample cell hν I s grating beam splitter Double beam, Dispersive chopper slit 100 detector 80 % T 60 40 20 3500 2500 1500 wavenumber (cm-1) 500

fixed mirror movable mirror Fourier Transform (FT) Spectrometer hν beam splitter sample detector P 30 20 10 0-10 -20-30 -500-300 -100 100 300 500 displacement

3450 2450 1450 wavenumber (cm-1) 450 70 60 50 40 % T 30 20 10 0 3450 2450 1450 wavenumber (cm-1) 60 50 40 30% T 20 10 0 450 100 80 60 % T 40 20 3450 2450 1450 wavenumber (cm-1) 450 0

Advantages of an FT instrument 1. Speed of data collection (less than one second) 2. High sensitivity 3. High resolution (0.01 cm -1 to 0.1 cm -1 ) 4. Very accurate values for ν

Sources: rare-earth oxides, silicon carbide or Nichrome wire Beam splitter: KBr plate coated with Ge Monochromator: reflection grating Detectors: i) measure increase in temperature (0.005 ºC) ii) pyroelectric [tgs, triglycine sulfate, (NH 2 CH 2 CH) 3 H 2 S 4 )] iii) photoconducting, MCT, HgCdTe, 77K

Sampling Solids: (i) mix < 1 mg of sample with 250 mg of KBr and form a pellet (ii) as 50/50 mixture with Nujol (iii) as a solution Liquids: between two KBr plates Gases: in a tube with KBr windows

3450 2450 1450 wavenumber (cm-1) FT-IR Spectrum of a polystyrene film 450 120 100 80 60 % T 40 20 0 ν I ν

ν = 1 2πc K µ µ = m1m2 m + m 1 2 Calculating Stretching frequencies í (cm 1 ) = 4.12 K ì K = 5 10 5 dyne/cm single bond 10 10 5 dyne/cm double bond 15 10 5 dyne/cm triple bond For a C-H bond stretch: K ì 5 10 12 + 1 12 1 5 1 í (cm ) = 4.12 = 4.12 = For a C- 2 H (C-D) bond stretch: K ì 5 10 12 + 2 12 2 5 1 í (cm ) = 4.12 = 4.12 = 3032 cm -1 2228 cm -1

Intensity of a band For the C=X stretch of: I = 0 I = weak I = strong ν is related to hydrogen bonding

group ν (cm -1 ) group ν (cm -1 ) -H 3400 C C 2150 N-H 3400 C= 1715 C-H 3000 C=C 1650 C N 2250 C- 1100 C-H 3000 cm -1 C- 1100 cm -1 C- 1100 cm -1 C= 1715 cm -1 C-Cl 750 cm -1 C 2143 cm -1

Alkanes CH 2 CH H 3 C CH 2 CH 3 CH 3 H C H H CH 3 C-H stretch at < 3000 cm -1 CH 2 bend at 1465 cm -1 CH 3 bend at 1375 cm -1 gem-dimethyl at 1370 and 1390 cm -1 -(CH 2 ) n>4 - bend at 720 cm -1 Nujol 100 2915 2854 1462 1377 722 80 60 %T 40 20 0 3400 2400 1400 wavenumber (cm-1) 400

C is sp2 hybridized Alkenes C C H C-H stretch at > 3000 cm -1 (3050 to 3200 cm -1 ) C=C stretch at 1640-1670 cm -1 + - C C C X C C C X ν (C=C) 1610 cm -1 As number of alkyl substituents increase on C=C group, ν (C=C) increases. C C H H out-of-plane (P) bend

ut-of-plane Bending Frequencies for Alkenes R 1 890 cm -1 R 2 C C H H R 1 970 cm -1 H C C H R 2 R 1 700-725 cm -1 H C C R 2 H R 1 910 and 990 cm -1 H C C H H 100 ν (cm -1 ) 80 3086 2966, 2914 1646 994, 918 60 40% T 20 0 3450 2450 1450 wavenumber (cm-1) 450

ν (C=C) = 1646 1611 1566 1656 cm -1 ν (C=C) = 1651 1657 1678 1780 cm -1

Alkynes R-C C-H C-H stretch at 3300 cm -1 C C stretch at 2150 cm -1 101 ν (cm -1 ) 3334 2946 2118 1458 1250 C C H 96 % T 91 3450 2450 1450 wavenumber (cm-1) 450 86

Aromatic compounds C-H stretch at 3100 cm -1 C=C stretch at 1600 and 1475 cm -1 H H H H R H P C-H bend (cm -1 ) 690 and 750 R' R' R R' R R 750 690, 780 and usually 880 800-825

vertone/combination bands at 1670-2000 cm -1. v 3 v 2 An overtone band is approximately 2 or 3 times the frequency of a fundamental band. v 1 v 0 100 3074 3042 2934 3400 CH 3 1946 1862 1978 1606 1498 2400 1400 wavenumber (cm-1) 694 726 400 80 60 % T 40 20 0

Alcohols: R--H -H stretch, strong and broad, 3300-3400 cm -1. If H-bonding is not present... -H stretch for primary alcohols 3640 cm -1 secondary alcohols 3630 cm -1 tertiary alcohols 3620 cm -1 phenols 3610 cm -1 C- stretch for primary alcohols 1050 cm -1 secondary alcohols 1100 cm -1 tertiary alcohols 1150 cm -1 phenols 1220 cm -1

110 3670 (v) 3331 (l) 1467 1378 1058 90 70 % T 50 30 3660 2660 1660 wavenumber (cm-1) 660 10 IR spectra of 1-octanol in vapour phase and as a neat liquid

Ethers R--R' asymmetric C- stretch at 1120 cm -1 (R and R' are alkyl) 1250 cm -1 (R is alkyl, R' is aryl) symmetric C- stretch at 1040 cm -1 (R is alkyl, R' is aryl) C 6 H 5 --CH 2 -CH 2 -CH 3 1602 1498 3400 2400 1400 wavenumber (cm-1) 1247 1058 100 80 60 % T 40 20 0 400

R C R C R C R C R C R C R C Cl H R' H R' H NR 2 Carbonyls: C= 1810 cm -1 (asymmetric), 1760 (symmetric) 1800 1760 (free acid) 1735 1725 1715 1710 1690

ν (C=) 1715 1690 cm -1 H ν (C=) 1725 1700 cm -1

Supplemental Slide: Two bands for a C= s-cis R R s-trans Effect of α halogens: H R R Cl ν (C=) 1725 cm -1 Cl R R H ν (C=) 1750 cm -1

Aldehydes: R C H C= stretch at 1725 cm -1 C-H stretch at 2850 and 2750 cm -1. 100 80 2927 2857 2716 60 % T 40 1727 3400 2400 1400 wavenumber (cm-1) 400 20 0 IR spectrum of nonyl aldehyde

Ketones: R C R' ν (C=) 1715 cm -1 110 90 70 1716 3400 2400 1400 wavenumber (cm-1) 50 % T 30 10-10 400 IR spectrum of 3-nonanone

1715 cm -1 1780 cm -1 R 2 C C 2140 cm -1 R 1680 cm -1 Ar R Ar Ar 1685 cm -1 1665 cm -1 H H 3 C CH 2 CH 3 H 3 C CH CH 3 ν (C=) = 1723 and 1706 cm -1 ν (C=) = 1622 cm -1 ν (-H) = 3200-2400 cm -1

Carboxylic Acids: R C H ν (C=) = 1730-1700 cm -1 ν (-H) = 3400-2400 cm -1 (br) ν (C-) = 1260 cm -1 -H bending at 930 cm -1 100% 80% 1711 3400 2400 1400 wavenumber (cm-1) 1288 938 60% % T 40% 20% 0% 400 IR spectrum of nonanoic acid

Esters: C R' C R' R' C R R ν (C=) = 1735-1750 cm -1 ν (C-) = 1000-1300 cm -1 (two bands) ν (C-) = 1150-1300 cm -1, stronger and broader R ν (C-) = 1000-1150 cm -1 100 80 CH 3 C C 2H 5 1764 1239 1056 3400 2400 1400 wavenumber (cm-1) 60 % T 40 20 0 400

ν (C=) = 1735 cm -1 1720 cm -1 1760 cm -1 1770 cm -1 1750 cm -1 1800 cm -1

Amides: R.. NRR' ν (C=) 1630-1680 cm -1 Amines: R N H R N H H R N R' H R' N-H stretch N-H bend C-N stretch 3300, 3400 1 1600 m, br 2 1100 3 3300 4 1500 5 1100 3 R NH 2 3180, 3350 6 1620-1640 7 600-760 R NHR 3300 1550 7 600-760

100 80 3375 3298 NH 2 1611 1064 60 % T 40 20 0 3450 2450 1450 wavenumber (cm-1) 450 3355 NH 2 3190 1643 1634 3450 2450 1450 wavenumber (cm-1) 100 80 60 % T 653 40 20 0 450

Nitriles: R-C N ν (C N) = 2250 cm -1 (aliphatic), 2230 cm -1 (aromatic) C 3450 N 2985 2941 2882 2243 1459 1389 1376 2450 1450 wavenumber (cm-1) 100 80 60 % T 40 20 0 450

Nitro: R + N.... -...... ν (N-) = 1350, 1550 cm -1 (aliphatic) ν (N-) = 1300, 1500 cm -1 (aromatic) 3450 3086 1616 1489 N 2 2450 1450 wavenumber (cm-1) 1541 1356 100 80 60 % T 40 20 0 450

Fluorescence -emission technique E 1 * E hν hν' E o λ

Intensity of Fluorescence lifetime of E 1 * is proportional to 1/ε XYZ * r f r r r others XYZ XYZ XYZ rf Φ = Quantum yield, Φ (0 to 1) r + r + r f r others

å >> ð-ð * å n-ð * biphenyl Φ = 0.2 fluorene Φ = 1

source hν grating slit sample cell attenuator grating detectors (pmt)

F λ excitation (nm) A / F 200 300 400 500 l absorption/emission (nm)

Experimental Considerations 1. F = kp o εbc detection limits: 10 to 0.01 ppm self-quenching self-absorption A < 0.05 or T > 90 %

2. Φ decreases as i) T increases ii) viscosity decreases iii) concentration of paramagnetic molecules increases iv) concentration of halogens in solvent or on analyte increases 3. F is ph-dependent, both Φ and λ emission

4. For quantitative applications a calibration curve is required 5. Precision and accuracy are both approx. 3 %

Applications: - determination of metals 3 N H Al 3+ N N Al N - quantification of biochemical analytes such as tryptophan, NH vitamins, steroids and DNA 2 H 2 N N + ethidium bromide - analysis of PAHs benzo[a]pyrene