STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

Similar documents
Introduction to Control Systems

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

Lecture 30: Frequency Response of Second-Order Systems

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

EECE 301 Signals & Systems Prof. Mark Fowler

State space systems analysis

ECEN620: Network Theory Broadband Circuit Design Fall 2014

The Performance of Feedback Control Systems

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Last time: Ground rules for filtering and control system design

Automatic Control Systems

Simulation of the parametric excitation of the cantilever beam vibrations

Last time: Completed solution to the optimum linear filter in real-time operation

CONTROL ENGINEERING LABORATORY

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

Chapter (a) ζ. ω. 5 2 (a) Type 0 (b) Type 0 (c) Type 1 (d) Type 2 (e) Type 3 (f) Type 3. (g) type 2 (h) type (a) K G s.

Time Response. First Order Systems. Time Constant, T c We call 1/a the time constant of the response. Chapter 4 Time Response

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

Fig. 1: Streamline coordinates

Brief Review of Linear System Theory

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

EE 508 Lecture 6. Scaling, Normalization and Transformation

Professor: Mihnea UDREA DIGITAL SIGNAL PROCESSING. Grading: Web: MOODLE. 1. Introduction. General information

Dynamic Response of Linear Systems

Chapter 5. Root Locus Techniques

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

Robust Resonance Suppression Control based on Self Resonance Cancellation Disturbance Observer and Application to Humanoid Robot

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

Damped Vibration of a Non-prismatic Beam with a Rotational Spring

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces

Performance-Based Plastic Design (PBPD) Procedure

1it is said to be overdamped. When 1, the roots of

VIBRATION DAMPING OF THE CANTILEVER BEAM WITH THE USE OF THE PARAMETRIC EXCITATION

EE Control Systems

Heat Equation: Maximum Principles

A NEW INTELLIGENT, ROBUST AND SELF TUNED CONTROLLER DESIGN (II).

Lecture 11. Course Review. (The Big Picture) G. Hovland Input-Output Limitations (Skogestad Ch. 3) Discrete. Time Domain

2C09 Design for seismic and climate changes

Precise Position Control of Pneumatic Servo System Considered Dynamic Characteristics of Servo Valve

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Analysis of the No-Load Characteristic of the Moving Coil Linear Compressor

Mechatronics Design of Ball and Beam System; Education and Research

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

ELEC 372 LECTURE NOTES, WEEK 1 Dr. Amir G. Aghdam Concordia University

ECM Control Engineering Dr Mustafa M Aziz (2013) SYSTEM RESPONSE

Chapter 2 Feedback Control Theory Continued

1. Nature of Impulse Response - Pole on Real Axis. z y(n) = r n. z r

Special Notes: Filter Design Methods

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

ECE 522 Power Systems Analysis II 3.2 Small Signal Stability

Reading. Particle Systems. What are particle systems? Overview

Analog Filter Design. Part. 3: Time Continuous Filter Implementation. P. Bruschi - Analog Filter Design 1

EE 508 Lecture 6. Dead Networks Scaling, Normalization and Transformations

FIXED-FREE AGAINST FREE-FREE BEAMS FOR DYNAMIC YOUNG S MODULUS OF WOOD By: Mehran Roohnia

Sinusoidal Steady-state Analysis

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

Basics of Dynamics. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering

Chapter #5 EEE Control Systems

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

Dynamic Instability of Taut Mooring Lines Subjected to Bi-frequency Parametric Excitation

Open Loop Vibrational Control of a Recycled Bioprocess

EE 4343 Lab#4 PID Control Design of Rigid Bodies

ANALYTICAL SOLUTIONS FOR WELL DRAWDOWN WITH WELL LOSSES 2. REAL WELL NEAR BOUNDARY - SOLUTION BY IMAGE WELL

In Lecture 25, the noisy edge data was modeled as a series of connected straight lines plus iid N(0,

Adaptive control design for a Mimo chemical reactor

Optical Disk Drive Servo System Using Dual Disturbance Observer

FREE VIBRATIONS OF SIMPLY SUPPORTED BEAMS USING FOURIER SERIES

Chapter 7: The z-transform. Chih-Wei Liu

Weak formulation and Lagrange equations of motion

Contents Kreatryx. All Rights Reserved.

NONLOCAL THEORY OF ERINGEN

ME242 Vibrations- Mechatronics Experiment

ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION

Paper-II Chapter- Damped vibration

TUTORIAL 6. Review of Electrostatic

PROPOSING INPUT-DEPENDENT MODE CONTRIBUTION FACTORS FOR SIMPLIFIED SEISMIC RESPONSE ANALYSIS OF BUILDING SYSTEMS

Digital Control System

Reading. Required: Witkin, Particle System Dynamics, SIGGRAPH 97 course notes on Physically Based Modeling.

2C09 Design for seismic and climate changes

Collocated versus non-collocated control [H04Q7]

Chapter 7, Solution 1C.

Reformulation of Disturbance Observer Design in the Frequency Domain

1. Linearization of a nonlinear system given in the form of a system of ordinary differential equations

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

Long Wave Runup. Outline. u u. x 26 May 1983 Japan Sea (Shuto, 1985) Some Analytical Solutions in Long Wave Theory: Runup and Traveling Waves

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability

Mathematics 3 Outcome 1. Vectors (9/10 pers) Lesson, Outline, Approach etc. This is page number 13. produced for TeeJay Publishers by Tom Strang

Dorf, R.C., Wan, Z., Johnson, D.E. Laplace Transform The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Both Paths Satisfy the Dynamic Equations

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

ME2142/ME2142E Feedback Control Systems

CHAPTER NINE. Frequency Response Methods

Application of Kronecker Summation Method in Computation of Robustly Stabilizing PI Controllers for Interval Plants

Lecture 13. Graphical representation of the frequency response. Luca Ferrarini - Basic Automatic Control 1

Transcription:

Iteratioal Coferece o Vibratio Problem September 9-,, Liboa, Portugal STBILITY OF THE CTIVE VIBRTIO COTROL OF CTILEVER BEMS J. Tůma, P. Šuráe, M. Mahdal VSB Techical Uierity of Otraa Czech Republic

Outlie. Lumped parameter model of a catileer beam. Modal aalyi 3. Cotroller type for a udamped catileer beam 4. Stable ad potetioaly utable pole of the cotrol ytem 5. Cotroller type for a udamped catileer beam 6. ll-filter 7. Example 8. Cocluio

+x Lumped parameter model of a catileer beam catileer beam of the legth L a a cotiuum i diided ito dicrete elemet of the ame legth ΔL that are modelled uig rigid-body dyamic Clampig +y δ y ΔL δ y y - Geeralized coordiate y, y,, y. δ + + - y δ + y + The bedig tiffe K δ relate the applied bedig momet M to the reultig relatie rotatio Δδ of the elemetary beam Lagrage' equatio of motio for a coeratie ytem y - y K δ +z M Cro-ectio b Small agle are aumed i 3EI L x h d T dt y T y Matrix form M y Ky G V y,,,..., ICOVP 3, Portugal, September 9 -, 3 3

Ma ad tiffe matrice Parameter B B B B B M 3, 3 4 L h m B L h m 5 4 4 6 4 4 6 4 4 6 L K K.5 mg y y y y y G y Steffe matrix Ma matrix Vector 4 ICOVP 3, Portugal, September 9 -, 3

y Modal aalyi Let a beam be parameterized by L =.5 m, b =.4 m, h =.5 m, =. ode 3 4 5 6 7 8 9 Frequecy [Hz] 6.6 67 47 9 5 56 393 3965 4755 539 ) x -4 The firt 5 of modal hape of the catileer beam - - -3-4 -5...3.4.5 x B) 3 - - -3...3.4.5 x ICOVP 3, Portugal, September 9 -, 3 5

Frequecy trafer fuctio Frequecy trafer fuctio Matrix q H r, q diplacemet of rth elemet force actig at qth elemet H = r H r Excited ibratio, udamped ytem M y Ky F rq Hr, q, r, q,,..., H r j M y Cy Ky F Excited ibratio, damped ytem, icou dampig j r * r j j j Pole r eed elemet y r q actig force f q jω jω -jω Imag jω jω -jω Real Rayleigh dampig α =.59, β =.4 C M K -jω damped -jω udamped ICOVP 3, Portugal, September 9 -, 3 6

o-collocated actie ibratio cotrol Localizatio of eor ad actuator ctuator + Seor: - Diplacemet - Velocity - cceleratio Feedbac Seor Cotroller ctuator (ource of force): - Electrodyamic haer - Piezoactuator Reduced arragemet of the VC ytem to a pair of a o-collocated eor ad actuator Set poit y SP y SP y SP + - Cotroller f R Seor Beam H, y = diplacemet = elocity = acceleratio ICOVP 3, Portugal, September 9 -, 3 7

Cotroller type for a udamped catileer beam Udamped catileer beam trafer fuctio rq Hr, q, r, q,,..., Pole lie o the imagiary axi (tability margi) SP + - Cotroller f q R Beam H r, q y r Cloed-loop trafer fuctio ~ H r, SP Y Y r SP H R R r, q H r, q R R Structurally table ytem Polyomial with odd power of r q TD, R R Suitable type of cotroller Seor T R T R r r q q r q R r q T D, r q R Polyomial of T - diplacemet (=) - elocity (=). - acceleratio (=).., TD, Cotroller R R R T T T Polyomial of?,,..., ICOVP 3, Portugal, September 9 -, 3 8

Stable ad potetioaly utable pole of the cotrol ytem Suppoe that the frequecy pectrum of diturbace affect oly the d-th mode of ibratio drqd Kd Hr, q, r, q,,..., d d K d i a gai factor aociated with the d-th mode of ibratio The trafer fuctio of the cloe loop with the cotroller of the D type Kd T ~ Yr d KdT Hr, SP YSP Kd T KdT d d The dampig ratio ξ ad the decay cotat σ Pole of a real ytem VC O VC OFF Imag jω jω jω -jω -jω Real Gai factor K, T dt Kd d K d d dr qd a a fuctio of table -jω utable 3 4 5 6 7 8 9 K d.46.669.339 -.775.866.68.76.67 -.64.49 ICOVP 3, Portugal, September 9 -, 3 9

imag imag imag imag Root locu of the catileer beam VC for = 5 Cloed loop trafer fuctio ~ H r, SP Y Y TH T r SP r, q TH r, TH Trafer fuctio pole r q,,, q r, q * 5 Root locu a a fuctio of T T,,, 53.4 977.5 53. T= 977 T= 53 table table utable 5.8 976.5 - -5 - real 76 55 755 3 T= 54 4 75 53 T= table table 745 5 - -5-6 -4 - real real 775 77 5 T= 775 table 77-4 -35-3 -5 real ICOVP 3, Portugal, September 9 -, 3

y [m] Simuli model of the catileer beam for = 5 Excited ibratio, damped ytem, icou dampig M y Cy Ky F F I Out Subytem Cotroller Gai P Gai D Cotat5 F Maual Switch Ma Switch F F Py5 Ty 5 Cotat4 Cotat3 Cotat Cotat F F3 F4 F5 F F3 F4 F5 F ctuator y Feedbac PF F K*uec i(m)*k K*uec i(m)*c K*uec i(m) y y3 y4 PF dd y5 Seor Cotroller Itegrator Itegrator Itegrator4 Itegrator6 Itegrator8 dy dy dy3 dy4 dy5 x -3 - - y dy dy dy3 dy4 dy5 Iitial coditio -3...3.4.5 poitio [m] Itegrator Itegrator3 Itegrator5 Itegrator7 Itegrator9 y y y3 y4 y5 F = -9.8 y y y y3 y4 y5 y Scope ICOVP 3, Portugal, September 9 -, 3

Uwraped phae [rad] b d PF PF The ue of the all-pa filter of the ecod order Trafer fuctio GPF, PF PF Magitude of the P filter Phae of the P filter - G j PF, llpa filter frequecy repoe i =.77 i =. Gai ctuator F y y y3 y4 y5 Seor Feedbac Cotroller - -3 - PF PF -4-5 -6-7 - - Relatie frequecy [-] ICOVP 3, Portugal, September 9 -, 3

ll-pa filter Digital P filter Parameter bx cx ax cy by ta f f S c d c b d y d a PF PF PF PF a x() iput Σ y(-) z - z - alog P filter x(-) Σ y(-) C output z - b/a b/a z - iput R C R x(-) Σ c/a c/a Σ - y() output R3 R4 ICOVP 3, Portugal, September 9 -, 3 3

y [m] y [m] y [m] Effect of VC o decay of ibratio.5 x VC OFF VC O VC O -3.5 x P filter OFF -3.5 x P filter O T = T = 5 T = -3.5.5.5 -.5 -.5 -.5 - - - -.5 -.5 -.5 -...3.4.5 -...3.4.5 -...3.4.5 Time [] Time [] Time [] ICOVP 3, Portugal, September 9 -, 3 4

Mater thei Pael Šuráe: ctie ibratio cotrol ICOVP 3, Portugal, September 9 -, 3 5

Cocluio The lumped-parameter model of the catileer beam wa deiged uig the method baed o the modal aalyi. The feedbac of the D type i ufficiet for dampig of the lightly damped ytem. The all pa filter of the ecod order ole the problem with poitie feedbac for ome mode of ibratio ad icreae the efficiecy of dampig. ICOVP 3, Portugal, September 9 -, 3 6