Catherine Heymans. Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey

Similar documents
What Gravitational Lensing tells us

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne)

Weak Lensing. Alan Heavens University of Edinburgh UK

arxiv: v1 [astro-ph.co] 7 Mar 2013

CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing

Weak Lensing: Status and Prospects

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing

Lensing with KIDS. 1. Weak gravitational lensing

Cosmic shear analysis of archival HST/ACS data

CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions

Refining Photometric Redshift Distributions with Cross-Correlations

The State of Tension Between the CMB and LSS

Shape Measurement: An introduction to KSB

Science from overlapping lensing / spec-z surveys. Chris Blake (Swinburne)

Weak lensing measurements of Dark Matter Halos around galaxies

Bayesian galaxy shape measurement for weak lensing surveys III. Application to the Canada France Hawaii Telescope Lensing Survey

Cosmology and Large Scale Structure

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford

arxiv: v1 [astro-ph.co] 30 Oct 2012

arxiv: v1 [astro-ph.co] 11 Dec 2015

Large Imaging Surveys for Cosmology:

arxiv: v2 [astro-ph.co] 7 Jan 2013

Studying the Dark Side of the Universe with. Tim Schrabback. Leiden Observatory Dresden, February 12th, 2009

Measuring Neutrino Masses and Dark Energy

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501.

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14

The shapes of faint galaxies: A window unto mass in the universe

Gravitational lensing

Énergie noire Formation des structures. N. Regnault C. Yèche

Cosmological Tests of Gravity

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005

Euclid and MSE. Y. Mellier IAP and CEA/SAp.

Clusters, lensing and CFHT reprocessing

arxiv: v1 [astro-ph.co] 24 Oct 2018

Fisher Matrix Analysis of the Weak Lensing Spectrum

Cosmology with weak-lensing peak counts

Cosmic shear and cosmology

arxiv: v2 [astro-ph.co] 3 May 2017

Approximate Bayesian computation: an application to weak-lensing peak counts

An Introduction to the Dark Energy Survey

Mapping the dark universe with cosmic magnification

arxiv: v2 [astro-ph.co] 29 Aug 2016

Controlling intrinsic alignments in weak lensing statistics

arxiv: v1 [astro-ph.co] 16 Oct 2013

Weak Lensing (and other) Measurements from Ground and Space Observatories

arxiv:astro-ph/ v2 22 Aug 2007

The Dark Sector ALAN HEAVENS

Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Observational Cosmology

The PRIsm MUlti-object Survey (PRIMUS)

Probing the Universe Using a Mostly Virtual Survey: The Garching-Bonn Deep Survey

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations

Extending Robust Weak Lensing Masses to z~1. Douglas Applegate, Tim Schrabback & the SPT-Lensing Team

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

arxiv: v1 [astro-ph.co] 3 Apr 2019

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015

Outline. Covers chapter 2 + half of chapter 3 in Ryden

Elliptical galaxies as gravitational lenses

WL and BAO Surveys and Photometric Redshifts

Cosmology with the ESA Euclid Mission

Modern Cosmology / Scott Dodelson Contents

EUCLID Cosmology Probes

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth

Introducing DENET, HSC, & WFMOS

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS.

Weighing the Giants:

The impact of relativistic effects on cosmological parameter estimation

Some issues in cluster cosmology

Large-Scale Filaments From Weak Lensing

EUCLID galaxy clustering and weak lensing at high redshift

Warm dark matter with future cosmic shear data

Un-natural aspects of standard cosmology. John Peacock Oxford anthropics workshop 5 Dec 2013

Euclid. Mapping the Geometry of the Dark Universe. Y. Mellier on behalf of the. Euclid Consortium.

Gravitational Lensing with Euclid

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Measuring the growth rate of structure with cosmic voids

Statistics and Prediction. Tom

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

MILANO OAB: L. Guzzo, S. de la Torre,, E. Majerotto, U. Abbas (Turin), A. Iovino; MILANO IASF (data reduction center): B. Garilli, M. Scodeggio, D.

RCSLenS galaxy cross-correlations with WiggleZ and BOSS

Imaging the Dark Universe with Euclid

HI and Continuum Cosmology

Modified Gravity and Cosmology

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK

The Large Synoptic Survey Telescope

Examining Dark Energy With Dark Matter Lenses: The Large Synoptic Survey Telescope. Andrew R. Zentner University of Pittsburgh

Cosmological surveys: from Planck to Euclid

Gravitational Lensing. A Brief History, Theory, and Applications

The impact of high spatial frequency atmospheric distortions on weak-lensing measurements

Dark Energy Survey: Year 1 results summary

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University

Diving into precision cosmology and the role of cosmic magnification

Weak Lensing: a Probe of Dark Matter and Dark Energy. Alexandre Refregier (CEA Saclay)

Galaxy Clusters in Stage 4 and Beyond

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Transcription:

Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey Catherine Heymans Institute for Astronomy, University of Edinburgh

The intervening dark matter lenses the light from distant galaxies. Weak Gravitational Lensing

Before lensing galaxies are randomly oriented*

Weak Gravitational Lensing Dark Matter Galaxies Lensed galaxies align

Clowe/Bradac et al

LSST forecast Ivezic et al 2011

CFHTLenS Survey Statistics 155 sq degrees, ugriz to i<24.7 (CFHTLS) High resolution: 17 gals per sq arcmin Deep imaging: zm = 0.75 Accurate redshifts: σz= 0.04(1+z) with 4% outliers Accurate shear: <m> = - 0.06 <c> = 0.001 Robust to systematic errors: 75% of the data used

The CFHT Lensing Survey UBC L. Van Waerbeke (PI) J. Benjamin H.Hildebrandt M. Milkeraitis S.Vafaei Edinburgh C. Heymans (PI) T. Kitching E. Grocutt A. Heavens F. Simpson Bonn T. Erben P. Simon T. Schrabback K. Holhjem Leiden H. Hoekstra K. Kuijken E. Semboloni E. van Uitert M. Smit Oxford L. Miller M. Velander IAP Y. Mellier R. Gavazzi Munich M. Kilbinger Waterloo M Hudson B. Gillis CSIC/IEEC C. Bonnett Shanghai L. Fu Tohoku J. Coupon UCL/JPL B. Rowe

Dark Matter changes the shapes of galaxies by ~1% Telescopes and the Atmosphere change the shapes of galaxies by ~15% Kitching et al 2010 We need to understand our instrumentation, modelling and analysis techniques to very high precision

Multi-epoch vs stacked data Slide from Henk Hoekstra

Kilbinger et al 2013

How aligned the galaxy pairs are Galaxy pair separation Kilbinger et al 2013

Fu et al 2008: Stack analysis Kilbinger et al 2013: Multi-epoch analysis Signal Signal Systematics Systematics θ (arcmin) θ (arcmin)

Galaxy-Galaxy Cosmology insensitive test of redshift-scaling 2.0 10-3 1.5 10-3 [0.2,0.4] [0.4,0.5] [0.5,0.7] [0.7,0.9] [0.9,1.3] <! t > at "=1 arcmin 1.0 10-3 5.0 10-4 0.0 10 0 Heymans et al 2012 0.14 0.29 0.44 0.61 0.79 1.06 mean photometric redshift sources

Cosmic Shear Cosmology sensitive measure of redshift-scaling How aligned the galaxy pairs are Heymans et al 2013

Flat LCDM Heymans et al 2013 ij + ( )= dk k J 0 (k ) Survey depth dw G i (w) G j (w) P Non-linear PS (Ωm ΩΔ σ8 w Η0..) k f k (w),w

Beyond-Einstein gravity theories ds 2 = (1 + 2 )dt 2 + a 2 (t)(1 + 2 )dx 2 Dynamical Potential Space Curvature Potential Poissons Equation 2 =4 Ga 2 GR fully tested on solar system scales, so any modification must be length or time dependent

Beyond-Einstein gravity theories ds 2 = (1 + 2 )dt 2 + a 2 (t)(1 + 2 )dx 2 Dynamical Potential Space Curvature Potential 2 ] =4 Ga 2 [1 + µ(a)] 2 [ + ] =8 Ga 2 [1 + (a)]

10 4 GR µ 0 = 0.5 Σ 0 = 0.5 CFHTLenS: relativistic ξ ± ( θ) 10 5 10 6 LOW-LOW LOW-HIGH HIGH-HIGH 10 0 10 1 θ (arcmin) 0.9 0.8 0.7 0.6 10 0 10 1 θ (arcmin) RSD: non-relativistic 10 0 10 1 GR µ 0 = 0.5 µ 0 = 1 Simpson et al 2013 & Benjamin et al 2013 θ (arcmin) f σ 8 0.5 0.4 0.3 0.2 0.1 D WiggleZ - Blake et al 2012 & 6dfGRS Beutler et al 2012 0 0 0.2 0.4 0.6 0.8 1 1.2 z

Simpson, Heymans et al 2013

Atmospheric effects Heymans/Rowe et al 2012

Atmospheric effects Heymans/Rowe et al 2012 Chang et al 2012

LSST Simulation Chang et al 2012 CFHT short exposure Data Heymans et al 2012

Calibration dependent on both Resolution and SNR true =(1+m) obs

CFHTLenS Data release: Download now from www.cfhtlens.org: 155 sq degrees ugriz lensing quality reduced deep pixel data Combined Lensing Shear and Photometric redshift catalogues to i<24.7 Tomographic shear correlation functions, redshift distributions and covariance matrices MCMC chains available on request

Technical Heymans et al. 2012 "CFHTLenS: The Canada- France-Hawaii Telescope Lensing Survey" Erben et al. 2013 "CFHTLenS: The Canada-France- Hawaii Telescope Lensing Survey - Imaging Data and Catalogue Products" Miller et al. 2013 "Bayesian Galaxy Shape Measurement for Weak Lensing Surveys -III. Application to CFHTLenS" Hildebrandt et al. 2012 "CFHTLenS: improving the quality of photometric redshifts with precision photometry" Heymans & Rowe et al. 2012 "The impact of high spatial frequency atmospheric distortions on weaklensing measurements" Cosmology Kilbinger et al. 2013 "CFHTLenS: Combined Probe Cosmological Model Comparison using 2D Weak Gravitational Lensing" Simpson et al. 2013 "CFHTLenS: Testing the Laws of Gravity with Tomographic Weak Lensing and Redshift Space Distortions" Benjamin et al. 2013 "CFHTLenS tomographic weak lensing: Quantifying accurate redshift distributions" Heymans et al. 2013 "CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments" Van Waerbeke et al. 2013 "CFHTLenS: Mapping the Large Scale Structures" Galaxy-galaxy Lensing Gillis et al. 2013 "CFHTLenS: The Environmental Dependence of Galaxy Halo Masses from Weak Lensing" Simon et al. 2013 "CFHTLenS: Higher-order galaxy-mass correlations probed by galaxy-galaxy-galaxy lensing" Velander et al. 2013 "CFHTLenS: The Relation Between Galaxy Dark Matter Haloes and Baryons from Weak Gravitational Lensing"

alternative slides!

m Planck

How intrinsically aligned the galaxy pairs are Heymans et al 2013

How aligned the galaxy pairs are Galaxy pair separation

low z, high z high z, high z How aligned the galaxy pairs are low z, low z Galaxy pair separation

CFHTLenS The state-of-the-art cosmological survey with 155 sq degrees, ugriz to i<24.7 (7σ extended source) Uses 5 yrs of data from the Deep, Wide and Pre-survey components of the CFHT Legacy Survey

GAMA-II VVDS Deep 64 sq degrees 22.5 sq degrees CFHTLS : 155 sq degrees 44 sq degrees 23 sq degrees VIPERS DEEP2 ugriz, to i=24.7 VVDS Wide Coupon et al 2010

Simpson, Heymans et al 2013 (a) µ(a) =µ 0 (a) = 0 (a)

Flat wcdm Curved wcdm Heymans et al 2013