Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs

Similar documents
WiFi MAC Models David Malone

Space Frequency Coordination Group

NOMA: Principles and Recent Results

Power Allocation and Coverage for a Relay-Assisted Downlink with Voice Users

Random Access Protocols for Massive MIMO

Two-Stage Channel Feedback for Beamforming and Scheduling in Network MIMO Systems

Optimal Association of Stations and APs in an IEEE WLAN

Performance of dual-searcher mobiles in hotspot scenarios

Wireless Internet Exercises

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure

Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks

Flow-level performance of wireless data networks

Input Optimization for Multi-Antenna Broadcast Channels with Per-Antenna Power Constraints

Giuseppe Bianchi, Ilenia Tinnirello

User Selection and Power Allocation for MmWave-NOMA Networks

Self-Adaptive Ant Colony System for the Traveling Salesman Problem

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Fair and Efficient User-Network Association Algorithm for Multi-Technology Wireless Networks

Ressource Allocation Schemes for D2D Communications

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE

MegaMIMO: Scaling Wireless Throughput with the Number of Users. Hariharan Rahul, Swarun Kumar and Dina Katabi

Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks

Harnessing Interaction in Bursty Interference Networks

On the Fundamental Limits of Multi-user Scheduling under Short-term Fairness Constraints

Revenue Maximization in a Cloud Federation

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

Transmission Scheduling Over a Fading Channel with Energy and Deadline Constraints

On Power Minimization for Non-orthogonal Multiple Access (NOMA)

Improved MU-MIMO Performance for Future Systems Using Differential Feedback

Implementation of Travelling Salesman Problem Using ant Colony Optimization

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Channel Allocation Using Pricing in Satellite Networks

Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery

Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems. Ali Ramezani-Kebrya

State Estimation and Motion Tracking for Spatially Diverse VLC Networks

Optimization of IEEE Multirate Wireless LAN

The Optimality of Beamforming: A Unified View

Scheduling Algorithms for Efficient. Delivery of Synchronous Traffic in. Wireless Access Networks

Hyperbolic set covering problems with competing ground-set elements

Register Allocation. Maryam Siahbani CMPT 379 4/5/2016 1

Giuseppe Bianchi, Ilenia Tinnirello

Metaheuristics and Local Search

Average Throughput Analysis of Downlink Cellular Networks with Multi-Antenna Base Stations

Upper Bounds on MIMO Channel Capacity with Channel Frobenius Norm Constraints

Call Completion Probability in Heterogeneous Networks with Energy Harvesting Base Stations

Metaheuristics and Local Search. Discrete optimization problems. Solution approaches

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

ANALYTICAL MODEL OF A VIRTUAL BACKBONE STABILITY IN MOBILE ENVIRONMENT

A Two-Phase Power Allocation Scheme for CRNs Employing NOMA

Minimization of Energy Loss using Integrated Evolutionary Approaches

Internet Congestion Control: Equilibrium and Dynamics

Combinatorial Auction-Based Allocation of Virtual Machine Instances in Clouds

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

On the User Association and Resource Allocation in HetNets with mmwave Base Stations

Alternative Decompositions for Distributed Maximization of Network Utility: Framework and Applications

Energy Harvesting Multiple Access Channel with Peak Temperature Constraints

A discrete wavelet transform traffic model with application to queuing critical time scales

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

Analysis of Uplink Power Control in Cellular Mobile Systems

Hybrid Pricing for Mobile Collaborative Internet Access

Service differentiation without prioritization in IEEE WLANs

Optimal Power Allocation for Cognitive Radio under Primary User s Outage Loss Constraint

Truthful Auction for Cooperative Communications with Revenue Maximization

Mario A. Nascimento. Univ. of Alberta, Canada http: //

THE Internet is increasingly being used in the conduct of

Broadband Internet Access Disclosure

Game Theoretic Approach to Power Control in Cellular CDMA

Energy-efficient scheduling

Near-optimal policies for broadcasting files with unequal sizes

Quantized Conflict Graphs for Wireless Network Optimization

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min

Maximizing System Throughput by Cooperative Sensing in Cognitive Radio Networks

EE 550: Notes on Markov chains, Travel Times, and Opportunistic Routing

Energy-efficiency versus delay tradeoff in wireless networks virtualization

Spatial Data Science. Soumya K Ghosh

Energy Efficiency and Load Balancing in Next-Generation Wireless Cellular Networks

Impact of size-based scheduling on flow level performance in wireless downlink data channels

On the Throughput of Proportional Fair Scheduling with Opportunistic Beamforming for Continuous Fading States

Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks

Computational Intelligence in Product-line Optimization

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks

NOMA: Principles and Recent Results

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation

Minimal Delay Traffic Grooming for WDM Optical Star Networks

Analysis of Urban Millimeter Wave Microcellular Networks

A Different Kind of Flow Analysis. David M Nicol University of Illinois at Urbana-Champaign

A Constrained MDP-based Vertical Handoff Decision Algorithm for 4G Wireless Networks

Combining Opportunistic and Size-Based Scheduling in Wireless Systems

personal weather station

DISTRIBUTION SYSTEM OPTIMISATION

SINR Model with Best Server Association for High Availability Studies of Wireless Networks

Enhancing Multiuser MIMO Through Opportunistic D2D Cooperation

SCHEDULING is one of the core problems in the design

Transcription:

Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs Dawood Sajjadi, Maryam Tanha, Jianping Pan Department of Computer Science, University of Victoria, BC, Canada November 9 th 2016, Dubai, UAE (LCN 2016)

Outline 1. Background 2. Motivations 3. Big Picture 4. Related Work 5. Problem Formulation 6. Meta-heuristic Solution 7. Evaluation Scenarios 8. Results 9. Summary 1/13

Background ~100 million people with Cell Phones and No Electricity 2/13

Motivation It happens many times! There are so many Access Points around us, but we have a Poor Wi-Fi Connection. 3/13

Big Picture ISP-1 ISP-2 ISP-3 Controller Virtualized/Centralized WLAN Infrastructure Building a common WLAN infrastructure for Cooperative ISPs (Centralized Management) AP2 SSID-3 AP3 SSID-2 Increasing the Service Coverage and Promoting QoS/QoE for the Customers SSID-2 Providing Proportional Fairness (PF) among the Clients AP1 AP4 Protocol-Independent Solution for Adaptive Association Control 4/13

Related Works Greedy co-channel APs Downlink traffic Compleity Running time No comparison with optimal solution/other schemes Cooperative Association Control Single Channel WLANs Disregarding the impact of interference Simultaneous association to multiple APs 1. W. Li, S. Wang, Y. Cui, X. Cheng, R. Xin, M. A. Al-Rodhaan, and A. Al-Dhelaan, AP association for proportional fairness in multi-rate WLANs IEEE/ACM Trans. on Networking, vol. 22, no. 1, pp. 191-202, 2014. 2. J. Yu and W. C. Wong, "Optimal Association in Wireless Mesh Networks" IEEE Trans. on Vehicular Technology, vol. 64, no. 5, pp. 2084-2096, 2015. 3. M. Derakhshani, X. Wang, T. Le-Ngoc, and A. Leon-Garcia, Airtime usage control in virtualized multi-cell 802.11 networks in IEEE Globecom Workshops, Dec 2015, pp. 1 6. 4. M. Al-Rodhaan, Q. Ma, and A. Al-Dhelaan, Genetic algorithm based approach to enhance network performance in multi-rate WLANs" Trans. on Networks and Comm., vol. 3, no. 6, p. 44, 2016. 5/13

Problem Formulation Dynamic Association Control in Virtualized Multi-rate WLANs Mied Integer Non-Linear Problem (NP-hard) Building the Rate Matri Solving the Relaed Optimization 2-Approimation Algorithm & Rounding 6/13

Meta-heuristic Solution Dynamic Association Control in Virtualized Multi-rate WLANs ACO-PF (Ant Colony Optimization for Proportional Fairness) Positive feedback-driven mechanism that evolves over time for converging to the best solution. using Meta-heuristic Solution to find a near-optimal Solution for maimizing PF Attractiveness (Heuristic) minimize Cost Total allocated BW to all the stations 1 / Attractiveness TotalBW = TotalBw + log (bi) 7/13

15 Users Meta-heuristic Solution Dynamic Association Control in Virtualized Multi-rate WLANs 6 APs 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 ACO-PF (Ant Colony Optimization for Proportional Fairness) Positive feedback-driven mechanism that evolves over time for converging to the best solution. using Meta-heuristic Solution to find a near-optimal Solution for maimizing PF Attractiveness (Heuristic) minimize Cost TotalBW = TotalBw + log (bi) Total allocated BW to all the stations 1 / Attractiveness 8/13

Evaluation Scenarios Eperiment Setup Protocol Interference Model ITU model for indoor attenuation Hotspot vs. Uniform user distribution Downlink greedy vs. Uplink greedy users 2.4 GHz (802.11g) Orthogonal APs Co-Channel APs 9/13

Selected Results Hotspot/Uplink/Co-channel Hotspot/Downlink/Co-channel 10/13

Test-bed Implementation Ali 3D2 - Compe 11/13

Selected Results Test-bed Results for UDP/TCP Traffic UDP Throughput ISP Load Sharing for RSSI & ACO-PF RSSI TCP Throughput ACO-PF 12/13

Summary Presenting an Adaptive & Cooperative Association Control Scheme for Common WLAN Infrastructures with Fairness Provisioning among Wi-Fi Stations Contributions Formulation of Wi-Fi Cooperative Association over Multiple ISPs Development of a Metaheuristic Scheme to Solve the Problem Faster & Less-Compleity Test-bed Implementation/Evaluation of the Proposed Scheme Ongoing/Future Works Etension of the current test-bed to SDN-enabled network devices Investigating the performance of ACO-PF for the heterogeneous traffic Integration of the proposed scheme with multi-hop Wi-Fi mesh networks 13/13

Q & A sajjadi @ uvic.ca http://seeb.ca

CAPWAP (Control And Provisioning of Wireless Access Points) RFC 5415 not implemented in an Interoperable way It has to forward all the Application Traffic to the Controller and it makes a Bottleneck. SDN provides a Common Language to control all Vendors' Equipment with higher level of granularity for fine-tuned control of network resources. It is a miture of Data, Control and Management planes that are bundled into a controller

hotspot downlink orthogonal uniform downlink orthogonal

6 APs 15 Users TotalBW = TotalBw + log (bi) Proposed Solution (ACO_PF) Attractiveness (Heuristic) TotalBW Cost 1 / TotalBW minimize 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5

ACO Recap Ant Colony Optimization (ACO) a meta-heuristic optimization technique Proposed by Marco Dorigo in 1992 Food Nest

Stations Stations Stations Non-Linear Approimation Optimization 2 4 3 6 5 8 rate = APs 0.0000 1.7976 2.3593 3.1457 0.0000 0.0000 0.0000 0.0000 0.0000 3.5951 0.0000 4.7186 0.0000 1.5729 0.0000 0.0000 0.0000 0.0000 2.3593 3.1457 2.3593 2.3593 0.0000 0.0000 0.0000 0.0000 0.0000 1.5729 2.3593 4.7186 0.0000 1.7976 0.0000 0.0000 2.3593 0.0000 4.7186 1.5729 1.7976 0.0000 0.0000 0.0000 0.0000 2.3593 1.5729 4.7186 0.0000 1.7976 3.5951 0.0000 6.2915 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.2915 0.0000 3.5951 0.0000 0.0000 0.0000 0.0000 4.7186 0.0000 3.5951 0.0000 2.6963 0.0000 3.1457 0.0000 2.3593 0.0000 0.0000 0.0000 1 7 t = APs 0.0000 0.0000 0.0000 0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 = 9.2350 9.2522 9.5099 9.7920 9.5908 9.8507 9.2462 9.3360 0.9060 0.9996 0.9981 1.0000 0.9049 0.9659 0.9076 0.9076 0.9020 1.0000 0.9019 0.9998 0.9008 0.9958 0.9034 0.9036 0.9060 0.9084 0.9981 1.0000 0.9971 0.9982 0.9076 0.9077 0.9061 0.9084 0.9059 0.9978 0.9971 1.0000 0.9076 0.9988 0.9045 0.9068 0.9964 0.9596 1.0000 0.9967 0.9985 0.9060 0.9061 0.9084 0.9059 0.9990 0.9946 1.0000 0.9076 0.9988 0.9995 0.9039 1.0000 0.9584 0.9005 0.9644 0.9031 0.9032 0.9028 0.9051 0.9027 0.9589 0.9017 0.9997 0.9043 1.0000 0.9020 0.9043 0.9020 0.9586 0.9980 0.9645 1.0000 0.9036 1.0000 0.9074 0.9989 0.9598 0.9960 0.9655 0.9066 0.9067 = 10

Non-Linear Approimation Optimization Stations Stations Stations BP_mat = Virtual Slots of AP j Stations Sum of the elements of each row is 1 0.9060 0.0940 0 0 0 0 0 0 0 0 0 0.8080 0.1920 0 0 0 0 0 0 0 0 0 0.7140 0.286 0 0 0 0 0 0 0 0 0 0.6201 0.3799 0 0 0 0 0 0 0 0 0 0.5246 0.4754 0 0 0 0 0 0 0 0 0 0.4306 0.5694 0 0 0 0 0 0 0 0 0 0.4301 0.5699 0 0 0 0 0 0 0 0 0 0.3329 0.6671 0 0 0 0 0 0 0 0 0 0.2350 0.765.235 0.9996 0.0004 0 0 0 0 0 0 0 0 0 0.9996 0.0004 0 0 0 0 0 0 0 0 0 0.9080 0.0920 0 0 0 0 0 0 0 0 0 0.8163 0.1837 0 0 0 0 0 0 0 0 0 0.7231 0.2769 0 0 0 0 0 0 0 0 0 0.6314 0.3686 0 0 0 0 0 0 0 0 0 0.5354 0.4646 0 0 0 0 0 0 0 0 0 0.4405 0.5595 0 0 0 0 0 0 0 0 0 0.3449 0.6551.2522 0.9981 0.0019 0 0 0 0 0 0 0 0 0 0.9000 0.1000 0 0 0 0 0 0 0 0 0 0.8981 0.1019 0 0 0 0 0 0 0 0 0 0.8040 0.1960 0 0 0 0 0 0 0 0 0 0.8004 0.1996 0 0 0 0 0 0 0 0 0 0.7063 0.2937 0 0 0 0 0 0 0 0 0 0.7063 0.2937 0 0 0 0 0 0 0 0 0 0.6090 0.3910 0 0 0 0 0 0 0 0 0 0.5110 0.4890.5099 1.000 0 0 0.9998 0.0002 0 0 0 0 0 0 0 0 0 0.9998 0.0002 0 0 0 0 0 0 0 0 0 0.9976 0.0024 0 0 0 0 0 0 0 0 0 0.9572 0.0428 0 0 0 0 0 0 0 0 0 0.9562 0.0438 0 0 0 0 0 0 0 0 0 0.9147 0.0853 0 0 0 0 0 0 0 0 0 0.8736 0.1264 0 0 0 0 0 0 0 0 0 0.8322 0.1678.7920 80 10... 10 10 10 10 rate = t = = APs 0.0000 1.7976 2.3593 3.1457 0.0000 0.0000 0.0000 0.0000 0.0000 3.5951 0.0000 4.7186 0.0000 1.5729 0.0000 0.0000 0.0000 0.0000 2.3593 3.1457 2.3593 2.3593 0.0000 0.0000 0.0000 0.0000 0.0000 1.5729 2.3593 4.7186 0.0000 1.7976 0.0000 0.0000 2.3593 0.0000 4.7186 1.5729 1.7976 0.0000 0.0000 0.0000 0.0000 2.3593 1.5729 4.7186 0.0000 1.7976 3.5951 0.0000 6.2915 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.2915 0.0000 3.5951 0.0000 0.0000 0.0000 0.0000 4.7186 0.0000 3.5951 0.0000 2.6963 0.0000 3.1457 0.0000 2.3593 0.0000 0.0000 0.0000 APs 0.0000 0.0000 0.0000 0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9.2350 9.2522 9.5099 9.7920 9.5908 9.8507 9.2462 9.3360 0.9060 0.9996 0.9981 1.0000 0.9049 0.9659 0.9076 0.9076 0.9020 1.0000 0.9019 0.9998 0.9008 0.9958 0.9034 0.9036 0.9060 0.9084 0.9981 1.0000 0.9971 0.9982 0.9076 0.9077 0.9061 0.9084 0.9059 0.9978 0.9971 1.0000 0.9076 0.9988 0.9045 0.9068 0.9964 0.9596 1.0000 0.9967 0.9985 0.9060 0.9061 0.9084 0.9059 0.9990 0.9946 1.0000 0.9076 0.9988 0.9995 0.9039 1.0000 0.9584 0.9005 0.9644 0.9031 0.9032 0.9028 0.9051 0.9027 0.9589 0.9017 0.9997 0.9043 1.0000 0.9020 0.9043 0.9020 0.9586 0.9980 0.9645 1.0000 0.9036 1.0000 0.9074 0.9989 0.9598 0.9960 0.9655 0.9066 0.9067

Non-Linear Approimation Optimization BP_mat = Virtual Slots of AP j Stations Sum of the elements of each row is 1 0.9060 0.0940 0 0 0 0 0 0 0 0 0 0.8080 0.1920 0 0 0 0 0 0 0 0 0 0.7140 0.286 0 0 0 0 0 0 0 0 0 0.6201 0.3799 0 0 0 0 0 0 0 0 0 0.5246 0.4754 0 0 0 0 0 0 0 0 0 0.4306 0.5694 0 0 0 0 0 0 0 0 0 0.4301 0.5699 0 0 0 0 0 0 0 0 0 0.3329 0.6671 0 0 0 0 0 0 0 0 0 0.2350 0.765.235 0.9996 0.0004 0 0 0 0 0 0 0 0 0 0.9996 0.0004 0 0 0 0 0 0 0 0 0 0.9080 0.0920 0 0 0 0 0 0 0 0 0 0.8163 0.1837 0 0 0 0 0 0 0 0 0 0.7231 0.2769 0 0 0 0 0 0 0 0 0 0.6314 0.3686 0 0 0 0 0 0 0 0 0 0.5354 0.4646 0 0 0 0 0 0 0 0 0 0.4405 0.5595 0 0 0 0 0 0 0 0 0 0.3449 0.6551.2522 0.9981 0.0019 0 0 0 0 0 0 0 0 0 0.9000 0.1000 0 0 0 0 0 0 0 0 0 0.8981 0.1019 0 0 0 0 0 0 0 0 0 0.8040 0.1960 0 0 0 0 0 0 0 0 0 0.8004 0.1996 0 0 0 0 0 0 0 0 0 0.7063 0.2937 0 0 0 0 0 0 0 0 0 0.7063 0.2937 0 0 0 0 0 0 0 0 0 0.6090 0.3910 0 0 0 0 0 0 0 0 0 0.5110 0.4890.5099 1.000 0 0 0.9998 0.0002 0 0 0 0 0 0 0 0 0 0.9998 0.0002 0 0 0 0 0 0 0 0 0 0.9976 0.0024 0 0 0 0 0 0 0 0 0 0.9572 0.0428 0 0 0 0 0 0 0 0 0 0.9562 0.0438 0 0 0 0 0 0 0 0 0 0.9147 0.0853 0 0 0 0 0 0 0 0 0 0.8736 0.1264 0 0 0 0 0 0 0 0 0 0.8322 0.1678.7920... 10 10 10 10 Profit_mat = 80 10 of each column 80 10 Profit of each edge = 0 0 0 0 0 0-5.0660 0 0 0 0 0 0 0 0 0-5.0660 0 0 0 0 0 0 0 0 0 0 0 0 14.8074 0 0 0 0 0 0 0 0 0 14.8074-5.5794 15.0951 0 0 0 0 0 0 0 0 0 15.0951 0 0 0 0 0 0 0 0-6.8204 0 0 0 0 0 0 0 0 0 0 0-6.8205 0 0 0 0 0 0 0 0 0-6.8205 0 0 0 0 0 0 0 0 0 0 0-7.4866 0 0 0 0 0 0 0 0 0-7.4866 0 0 0 0 0 0 0 0 0 0 0 15.6547 0 0 0 0 0 0 0 0 0 15.6547 0 0 0 0 0 0 0 0 0 0 0 0-6.0241 0 0 0 0 0 0 0 0 0-6.0241 14.2681 0 0 0 0 0 0 0 0 0 14.2681-4.7276 14.2687 0 0 0 0 0 0 0 0 0 14.2687-8.2607 0 0 0 0 0 0 0 0 0-8.2607 0 0 0 0 0 0 0 0 0 0 0-7.0584 0 0 0 0 0 0 0 0 0-7.0584 0 0 0 0 Pick the Ma Element...

Non-Linear Approimation Optimization 2 1 4 3 U1 = 1.50 U2 = 3.42 U3 = 1.50 U4 = 2.25 U5 = 4.50 U6 = 2.25 U7 = 6.00 U8 = 3.42 U9 = 3.42 U10=2.57 6 5 Sorted users w.r.t. Allocated BW 7 U7 = 6.00 U5 = 4.50 U2 = 3.42 U8 = 3.42 U9 = 3.42 U10=2.57 U4 = 2.25 U6 = 2.25 U1 = 1.50 U3 = 1.50 8 Profit_mat = Profit of each edge = 0 0 0 0 0 0-5.0660 0 0 0 0 0 0 0 0 0-5.0660 0 0 0 0 0 0 0 0 0 0 0 0 14.8074 0 0 0 0 0 0 0 0 0 14.8074-5.5794 15.0951 0 0 0 0 0 0 0 0 0 15.0951 0 0 0 0 0 0 0 0-6.8204 0 0 0 0 0 0 0 0 0 0 0-6.8205 0 0 0 0 0 0 0 0 0-6.8205 0 0 0 0 0 0 0 0 0 0 0-7.4866 0 0 0 0 0 0 0 0 0-7.4866 0 0 0 0 0 0 0 0 0 0 0 15.6547 0 0 0 0 0 0 0 0 0 15.6547 0 0 0 0 0 0 0 0 0 0 0 0-6.0241 0 0 0 0 0 0 0 0 0-6.0241 14.2681 0 0 0 0 0 0 0 0 0 14.2681-4.7276 14.2687 0 0 0 0 0 0 0 0 0 14.2687-8.2607 0 0 0 0 0 0 0 0 0-8.2607 0 0 0 0 0 0 0 0 0 0 0-7.0584 0 0 0 0 0 0 0 0 0-7.0584 0 0 0 0 Pick the Ma Element of each column 80 10...