Table of Contents. Foreword... Jörge DE SOUSA NORONHA. Introduction... Michel BRILLOUËT

Similar documents
Nano-Lithography. Edited by Stefan Landis

Optical Proximity Correction

Chromeless Phase Lithography (CPL)

Photolithography II ( Part 1 )

Introduction. Photoresist : Type: Structure:

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

Photomasks. Photolithography Evolution 9/11/2004 ECE580- MPE/MASKS/PHOTOMASKS.PPT

Nanostructures Fabrication Methods

Lecture 14 Advanced Photolithography

MICRO AND NANOPROCESSING TECHNOLOGIES

X-Rays From Laser Plasmas

Transmission Electron Microscopy

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography

PRINCIPLES OF PHYSICAL OPTICS

Overview of the main nano-lithography techniques

Design of Attenuated Phase-shift shift Mask with ITO Absorber for Extreme Ultraviolet Lithography

Introduction to Semiconductor Integrated Optics

X-Ray Interaction with Matter: Absorption, Scattering and Refraction

Nanomaterials and their Optical Applications

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

NANO-CMOS DESIGN FOR MANUFACTURABILILTY

Techniken der Oberflächenphysik (Techniques of Surface Physics)

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

MODERN OPTICS. P47 Optics: Unit 9

Swing Curves. T h e L i t h o g r a p h y T u t o r (Summer 1994) Chris A. Mack, FINLE Technologies, Austin, Texas

Top down and bottom up fabrication

Surface Analysis - The Principal Techniques

ORION NanoFab: An Overview of Applications. White Paper

Presentation Phys Katia GASPERI. Statistical study of single DNA molecules into dynamic array

Introduction to Photolithography

custom reticle solutions

Lab 1. Resolution and Throughput of Ion Beam Lithography

Nano fabrication and optical characterization of nanostructures

Physical Principles of Electron Microscopy. 2. Electron Optics

Microscopy: Principles

Presentation Phys Katia GASPERI. Statistical study of single DNA molecules into dynamic array

Nano Materials. Nanomaterials

Photolithography 光刻 Part II: Photoresists

Lab1. Resolution and Throughput of Ion Beam Lithography.

Technology for Micro- and Nanostructures Micro- and Nanotechnology

Photoresist Profile. Undercut: negative slope, common for negative resist; oxygen diffusion prohibits cross-linking; good for lift-off.

Chapter 2 Process Variability. Overview. 2.1 Sources and Types of Variations

Praktikum zur. Materialanalytik

Physics and Chemistry of Interfaces

Principles of Electron Optics

Overview of EUV Lithography and EUV Optics Contamination

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

High Optical Density Photomasks For Large Exposure Applications

Lasers and Electro-optics

NANO/MICROSCALE HEAT TRANSFER

High NA the Extension Path of EUV Lithography. Dr. Tilmann Heil, Carl Zeiss SMT GmbH

Lecture 8. Photoresists and Non-optical Lithography

Vibrational Spectroscopies. C-874 University of Delaware

* AIT-4: Aberrations. Copyright 2006, Regents of University of California

Process-Simulation-Flow And Metrology of VLSI Layout Fine- Features

Sensors and Metrology. Outline

Far IR Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions

Accelerated Neutral Atom Beam Processing of Ultra-thin Membranes to Enhance EUV Transmittance. February 22, 2015

Copyright 2004 by the Society of Photo-Optical Instrumentation Engineers.

The Monte Carlo Simulation of Secondary Electrons Excitation in the Resist PMMA

Distributed feedback semiconductor lasers

Direct-Write Deposition Utilizing a Focused Electron Beam

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Lithography Challenges Moore s Law Rising Costs and Challenges of Advanced Patterning

Lithography and Etching

IC Fabrication Technology

Soft X-ray multilayer mirrors by ion assisted sputter deposition

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Fabrication of EUVL Micro-field Exposure Tools with 0.5 NA

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Measurement of the role of secondary electrons in EUV resist exposures

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Silicon VLSI Technology. Fundamentals, Practice and Modeling

EUV and Soft X-Ray Optics

Table of Contents. Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity... 1

Nanotechnology Fabrication Methods.

Computational Nanoscience

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou

Optics of Liquid Crystal Displays

AP5301/ Name the major parts of an optical microscope and state their functions.

SHRINK. STACK. INTEGRATE.

FUNDAMENTALS OF POLARIZED LIGHT

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Fabrication at the nanoscale for nanophotonics

Electric field enhancement in metallic and multilayer dielectric gratings

Nano fabrication by e-beam lithographie

Fabrication Engineering at the Micro- and Nanoscale, by Stephen Campbell, 4 th Edition, Oxford University Press

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Photolithography Overview 9/29/03 Brainerd/photoclass/ECE580/Overvie w/overview

Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Dan Smith 2016 EUV Mask Pellicle TWG San Jose CA 21 Feb 2016

CUSTOM RETICLE SOLUTIONS

Transcription:

Table of Contents Foreword... Jörge DE SOUSA NORONHA Introduction... Michel BRILLOUËT xi xvii Chapter 1. Photolithography... 1 Philippe BANDELIER, Anne-Laure CHARLEY and Alexandre LAGRANGE 1.1. Introduction... 1 1.2. Principles and technology of scanners... 3 1.2.1. Illumination... 3 1.2.2. The mask or reticle... 4 1.2.3. Projection optics... 5 1.2.4. Repeated projection and scanning projection... 7 1.3. Lithography processes... 8 1.3.1. Anti-reflective coating... 9 1.3.2. Resists... 10 1.3.3. Barrier layers or top coating... 12 1.4. Immersion photolithography... 12 1.4.1. Immersion lithography... 12 1.4.2. Resolution improvement... 13 1.4.3. Relevance of immersion lithography... 15 1.4.4. Immersion liquids... 16 1.4.5. Immersion scanners... 19 1.4.6. Immersion specific constraints and issues... 22 1.5. Image formation... 25 1.6. Lithography performances enhancement techniques... 27 1.6.1. Off axis illumination (OAI)... 28

vi Lithography 1.6.2. Optical proximity corrections (OPC)... 29 1.6.3. Phase shift masks (PSM)... 30 1.7. Contrast... 31 1.7.1. Polarized light contrast... 31 1.7.2. Influence of contrast on roughness... 34 1.8. Bibliography... 38 Chapter 2. Extreme Ultraviolet Lithography... 41 Maxime BESACIER, Christophe CONSTANCIAS and Jean-Yves ROBIC 2.1. Introduction to extreme ultraviolet lithography... 41 2.1.1. Chapter introduction... 41 2.1.2. Extreme ultraviolet lithography: the successor of optical lithography at 248 nm and 193 nm wavelengths... 42 2.1.3. The spectral range of extreme ultraviolet... 44 2.1.4. Choice of wavelength and resolution limit for EUV lithography... 44 2.2. The electromagnetic properties of materials and the complex index... 46 2.2.1. Wave vector and complex index... 47 2.2.2. Scattering and absorption: the electromagnetic origin of the refractive index... 48 2.2.3. Light propagation and refractive index... 53 2.2.4. Reflection and transmission of a monochromatic wave... 57 2.3. Reflective optical elements for EUV lithography... 61 2.3.1. The interferential mirror principle: Bragg structure... 61 2.3.2. Reflective optics: conception and fabrication... 63 2.3.3. Projection optics for EUV lithography... 70 2.4. Reflective masks for EUV lithography... 72 2.4.1. Different mask types... 72 2.4.2. Manufacturing processes for EUV masks... 76 2.4.3. Mask defectivity... 78 2.5. Modeling and simulation for EUV lithography... 79 2.5.1. Simulation, a conceptional tool... 79 2.5.2. Simulation methods... 82 2.6. EUV lithography sources... 90 2.6.1. Constitutive elements of a plasma source... 90 2.6.2. Specifications for an EUV source... 91 2.6.3. EUV sources... 92 2.7. Conclusion... 95 2.8. Appendix: Kramers Krönig relationship... 96 2.9. Bibliography... 97

Table of Contents vii Chapter 3. Electron Beam Lithography... 101 Christophe CONSTANCIAS, Stefan LANDIS, Serdar MANAKLI, Luc MARTIN, Laurent PAIN and David RIO 3.1. Introduction... 101 3.2. Different equipment, its operation and limits: current and future solutions... 106 3.2.1. Gaussian beam... 106 3.2.2. Shaped electron beam... 106 3.2.3. Multi-electron beam... 109 3.3. Maskless photolithography... 109 3.3.1. Optical lithography without a mask... 109 3.3.2. Charged particle maskless lithography... 110 3.4. Alignment... 118 3.5. Electron-sensitive resists... 120 3.6. Electron matter interaction... 121 3.7. Physical effect of electronic bombardment in the target... 123 3.7.1. Polymerizing, chemical bond breaking... 123 3.7.2. Thermal effect... 124 3.7.3. Electrical effect... 124 3.8. Physical limitations of e-beam lithography... 125 3.8.1. Fundamental limit of electrons... 126 3.8.2. Resist-related limitations... 127 3.8.3. Limitations linked to tooling and electronic optics... 129 3.8.4. Diameter of the crossover... 130 3.8.5. Optical geometrical aberrations... 132 3.8.6. Chromatic aberrations... 133 3.8.7. Space charge aberration... 134 3.9. Electrons energy loss mechanisms... 136 3.9.1. The notion of cross-section... 136 3.9.2. Elastic scattering on the nuclei... 138 3.9.3. Inelastic electron electron collisions... 139 3.9.4. Electromagnetic braking of electrons: Bremsstrahlung... 142 3.9.5. Energy distribution in the resist... 143 3.9.6. Monte Carlo simulation... 144 3.10. Database preparation... 146 3.10.1. Database preparation process... 146 3.10.2. Input formats... 148 3.10.3. Proximity effects... 149 3.11. E-beam lithography equipment... 156 3.11.1. Principle of electron-beam writing... 156 3.11.2. Examples of Gaussian beam tools... 168 3.12. E-beam resist process... 168

viii Lithography 3.12.1. The resist... 169 3.12.2. The nature of the substrate... 170 3.12.3. Proximity effects... 170 3.12.4. Development... 171 3.12.5. The energy of the electrons... 172 3.12.6. Thickness of the resist film... 173 3.12.7. Summary... 174 3.12.8. Chemically Amplified Resists (CARs)... 176 3.12.9. Non-CARs... 176 3.12.10. Evacuation of charges on a dielectric... 178 3.13. Bibliography... 179 Chapter 4. Focused Ion Beam Direct-Writing... 183 Jacques GIERAK 4.1. Introduction... 183 4.1.1. A little history... 183 4.1.2. So why did it take so long to implement that suggestion?... 184 4.2. Main fields of application of focused ion beams... 185 4.2.1. Scanning ion microscopy... 185 4.2.2. Ion lithography on sensitive resists... 187 4.2.3. Implantation... 188 4.2.4. Localized etching... 189 4.2.5. Reactive gas and metal precursor injection... 191 4.3. From microfabrication to nanoetching... 193 4.3.1. Principles and properties of liquid metal ion sources... 194 4.3.2. Principles and properties of an ion column for focused ion beam generation... 199 4.3.3. Calculation of the optical properties of an electrostatic system... 210 4.3.4. Optimization: a very high resolution FIB column (NanoFIB)... 212 4.3.5. Architecture of FIB instruments... 216 4.4. The applications... 216 4.4.1. Thin membrane preparation for Transmission Electron Microscopy (TEM)... 216 4.4.2. Exploration of the ultimate nanostructuring potential of a focused ion beam... 219 4.5. Conclusion... 225 4.6. Acknowledgements... 226 4.7. Bibliography... 226

Table of Contents ix Chapter 5. Charged Particle Optics... 233 Peter HAWKES 5.1. The beginnings: optics or ballistics?... 233 5.2. The two approaches: Newton and Fermat... 234 5.3. Linear approximation: paraxial optics of systems with a straight optic axis, cardinal elements, matrix representation... 237 5.4. Types of defect: geometrical, chromatic and parasitic aberrations... 245 5.4.1 Geometrical aberrations... 247 5.4.2 Chromatic aberrations... 252 5.4.3 Parasitic aberrations... 253 5.5. Numerical calculation... 253 5.5.1. Optimization... 257 5.6. Special cases... 257 5.6.1. Guns... 257 5.6.2. Aberration correctors... 264 5.6.3. Further reading... 268 5.7. Appendix... 269 5.8. Bibliography... 269 Chapter 6. Lithography resists... 275 Amandine JOUVE, Michael MAY, Isabelle SERVIN and Julia SIMON 6.1. Lithographic process... 275 6.1.1. Substrate preparation... 276 6.1.2. Resist coating using centrifugation... 278 6.1.3. Post coating thermal bake/post apply bake (PAB)... 281 6.1.4. Exposure... 282 6.1.5. Post exposure bake (PEB)... 282 6.1.6. Development step... 284 6.2. Photosensitive resists... 286 6.2.1. Resist types... 286 6.2.2. PAC resist... 288 6.2.3. Chemically amplified resists (CAR)... 290 6.2.4. Conclusion... 315 6.3. Performance criteria... 316 6.3.1. Sensitivity/contrast... 316 6.3.2. Process window... 317 6.3.3. Line roughness... 319 6.3.4. Resist outgassing... 321 6.3.5. Reflectivity control... 326 6.3.6. Pattern collapse... 333 6.3.7. Thin film effect... 341 6.3.8. Etch resistance... 346

x Lithography 6.3.9. Implantation resistance... 355 6.4. Conclusion... 358 6.5. Bibliography... 359 List of Authors... 369 Index... 373