Deep moist atmospheric convection in a subkilometer

Similar documents
Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Taking an advantage of innovations in science and technology to develop MHEWS

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

京都 ATLAS meeting 田代. Friday, June 28, 13

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

2011/12/25

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

The unification of gravity and electromagnetism.

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

Adaptation Oriented Simulations for Climate Variability

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Predictabilities of a Blocking Anticyclone and a Explosive Cyclone

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Thermal Safety Software (TSS) series

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Multi-Scale Simulations for Adaptation to Global Warming and Mitigation of Urban Heat Islands

Estimation of Gravel Size Distribution using Contact Time

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

Yutaka Shikano. Visualizing a Quantum State

Simulations of Atmospheric General Circulations of Earth-like Planets by AFES

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

ATLAS 実験における荷電ヒッグス粒子の探索

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Development of Advanced Simulation Methods for Solid Earth Simulations

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

October 7, Shinichiro Mori, Associate Professor

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Analysis of shale gas production performance by SGPE

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

GRASS 入門 Introduction to GRASS GIS

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Future perspective of seasonal prediction system developments at ECMWF ECMWF における季節予報システム開発の展望

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Numerical Experiments with Multi-Models for Paleo-Environmental Problems

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

すばる望遠鏡将来装置計画 WS TMT の観測装置開発. Project Overview TMT FL instruments Japanese instruments. 柏川伸成 (NAOJ/TMT project) Jan. 2011

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善

Illustrating SUSY breaking effects on various inflation models

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Weather Data Quality improvement Planning

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

Evaluation of Satellite Precipitation Measurements Considering Physical Conditions of Atmosphere

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

Product Specification

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

J-PARC E16 電子対測定実験の物理と実験計画

スペース赤外線天文学の 現状と将来 ~ 波長の壁を越えて ~ 中川貴雄 (ISAS/JAXA)

確率統計 特論 (Probability and Statistics)

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Original Paper. Numerical predictions of sulfur and nitrogen depositions through fog in forest areas

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

AcuSolve Case Study. Summary. 30[m/s] 20. Analysis of actual flying condition. Aerodynamic analysis with rolling tire and pitching body

Advanced 7 Bio-Inspired System

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

分解反応で探るダイニュートロン相関 中村隆司 東京工業大学 理工学研究科

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

XENON SHORT ARC LAMPS キセノンショートアークランプ

中村宏 工学部計数工学科 情報理工学系研究科システム情報学専攻 計算システム論第 2 1

Nichia STS-DA <Cat.No > SPECIFICATIONS FOR NICHIA LUMINOUS FLUX WHITE STANDARD LED MODEL : NLHW01S02 NICHIA CORPORATION

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Transcription:

Deep moist atmospheric convection in a subkilometer global simulation Yoshiaki Miyamoto, Yoshiyuki Kajikawa, Ryuji Yoshida, Tsuyoshi Yamaura, Hisashi Yashiro, Hirofumi Tomita (RIKEN AICS) I. Background II. Experimental Settings III. Methodology for detection of convection IV. Results V. Conclusion 戦略分野 3 メソ課題研究会 March 7 th, 2014 @Kobe

I. BACKGROUND deep moist convection := Convection Byers and Braham (1949)

Convection Convection Element of cloudy disturbances Transport heat and moisture Horizontal scale ( x) 10 0 km hard to explicitly solve in global models ( x 10 1 10 2 km) cumulus parameterization Byers and Braham (1949) Heat & Moisture ~10 0 km ~10 0 km 2000 Model development +enhancement of computer power => x 10 0 km clouds are explicitly solved in global models Still coarser or comparable to obs. Regional model (Weismann et al., 1997) : Change around Δx <= 4 km Objective: Reveal the dependence of the simulated convection on resolution in global model by describing the global statistical characteristics.

Experimental design model NICAM (Tomita and Satoh 2004, Satoh et al. 2008) Initial state 3 day integrated results of 1 step coarser resolution SST NCEP analysis + nudging (Reynolds weekly SST) land Model adjusted produced by 5 year run Cloud physics NSW6 (Tomita 2008) Boundary layer turbulence MYNN (Nakanishi and Niino 2004, Noda et al. 2008) Surface flux Louis (1979) Long and short wave radiation MSTRNX (Sekiguchi and Nakajima 2008) Cumulus parameterization Δx integration period(12 h) 72 h integration before producing initial fields

Computational Cost Nodes used: 20480 (~160000 cores) Wall-clock time: 53 h Sustained performance: 7~8 % Storage: 200 TB Δx integration period(12 h) 72 h integration before producing initial fields

Δ14.0 km Snap shot of OLR 12 h integrations Δ7.0 km Δ3.5 km Δ1.7 km Δ0.87 km

II. METHOD OF DETECTING CONVECTION 1. Detect convective grids by ISCCP table 2. Determine convective core grids

Step 1/2: Detect convective grids by ISCCP table Δx= 14 km (Rossow and Schiffer 1999)

Step 2/2: determine convective core grids a) ISCCP convective grids ( ) b) Find grids ( ) at which all the surrounding 8 grids satisfy the ISCCP condition c) Estimate horizontal gradient of vertical velocity averaged vertically in the troposphere d) Convective grids ( ) := where vertically aved w is larger than those at surrounding 8 grids

example(δx=3.5 km) Δx= 3.5 km ISCCP convective grid Convection core grid w(troposphere mean) CI = 0.1 m s 1 w = 0.1 m s 1

Δx= 14 km ISCCP convective grid Convection core grid w(troposphere mean) CI = 0.1 m s 1 w = 0.1 m s 1 Δx= 7km Δx= 1.7 km

III. RESULTS Δ0.87 km

Composited structure of convection (GL13) Convection core grid transform the coordinate into the cylindrical around the core grid mean of all the detected convection symmetric around the x axis

Composite of convection (vertical velocity) Δ14.0 km Δ7.0 km Δ3.5 km Δ1.7 km Δ0.87 km Δx 3.5 km: Convection is represented at 1 grid Little dependence on resolution Δx 1.7 km: Convection is represented at multiple grids Intensify w/ resolution transform the coordinate into the cylindrical around the core grid mean of all the detected convection symmetric around the x axis X axis is normalized by resolution

Number and distance of convection number 10 5 10 4 (a) number of convection frequency/total number (b) distance between convection 0.25 14.0 0.2 7.0 3.5 1.7 0.15 0.8 0.1 0.05 10 3 0.8 1.7 3.5 7 14 (km) 0 0 4 5 10 number of gird Δx 3.5 km: number: increase by factor of 4 distance: 4 grids Δx 1.7 km: number: decrease in increasing rate distance: 5 grids

Summary Global simulation with a sub-kilometer resolution Finding Convection features (structure, number, distance) change between Δ3.5 km Δ1.7 km - Δx should be 2.0 3.0 km to resolve convection in global models 3.5 km 1.7 km

Thank you very much for your attention! Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro and H. Tomita, 2013: Deep moist atmospheric convection in a sub-kilometer global simulation, Geophysical Research Letters, 40, 4922-4927. Special thanks to Drs. H. Miura, S. Iga, S. Nishizawa, M. Satoh, our colleagues, and two anonymous reviewers for fruitful discussions. The authors are grateful to researchers and technical experts at RIKEN and FUJITSU for their kind help. The simulations were performed using the K computer at the RIKEN Advanced Institute for Computer Science.

SUPPLEMENT

What is the general characteristics of convection? Isolated convection Element of amospheric cloudy disturbances Transport of heat/moisture What is the general characteristics of convection? Jorgensen and LeMone (1989): 50% of convection (core) has horizontal scale less than 1 km コアの直径 (km) 15 1 Resolution dependence Weismann et al. (1997): dependence of squall line (Klemp and Wilhelmson (1979) cloud model) - Characteristics changes Δx less than and equal to 4 km http://callofduty.wikia.com/wiki/file:cumulonimbus.jpg 存在頻度 ( 積算 ) Jorgensen&LeMone (1989) Is there any threshold of resolution in realistic conditions? w w u qr Weismann et al. (1997)

Model(NICAM, Tomita & Satoh 2004, Satoh et al. 2008) Global cloud-system resolving model Icosahedral grid nohydrostatic DC explicit cloud expression: Miura et al. (2007) 21

面積 解析範囲 : 130 190E, 15 15N a r e a ( 1 0 k m ) 0.1 0.08 0.06 0.04 0.02 area con cutoff (GL08-12 t=201208250600) 0 area icp cutoff (GL08-12 t=201208250600) area icp cutoff (GL08-12 t=201208250600) 50 5 40 4 area ( 10-6 km 2 ) 30 20 10 area ( 10-6 km 2 ) 3 2 1 0 0

面積平均質量フラックス 解析範囲 : 130 190E, 15 15N areal ave. (con) of z-aved mass flux (GL08-12 t=201208250 m a s s f l ux ( x 1 0 3 k g m - 2 s - 1 ) 400 350 300 250 200 150 100 50 0 conave conave areal ave. (all) of z-aved mass flux (GL08-12 t=2012082506 areal ave. (icp) of z-aved mass flux (GL08-12 t=2012082506 m a s s flu x ( x 1 0 3 kg m -2 s -1 ) 10 8 6 4 2 0 allave allave m a s s f l ux ( x 1 0 3 k g m - 2 s - 1 ) 200 150 100 50 0 icpave icpave

面積平均降水量 解析範囲 : 130 190E, 15 15N precipitation ( x 10 3 m m h -1 ) areal ave. (icp) of rain flux (GL08-13 t=201208250600) 10 8 6 4 2 0 conave conave p r e c i p i t a t i o n ( x 1 0 m m h ) areal ave. (all) of rain flux (GL08-13 t=201208250600) 0.2 0.15 0.1 0.05 0 allave allave precipitation ( x 10 3 m m h -1 ) areal ave. (icp) of rain flux (GL08-13 t=201208250600) 5 4 3 2 1 0 icpave icpave

面積積分質量フラックス 解析範囲 : 130 190E, 15 15N rea-integrated (con) z-aved mass flux (GL08-13 t=20120825 m a s s flu x ( x 1 0 3 kg s -1 ) 20 15 10 5 contot contot 0 area-integrated (all) z-aved mass flux (GL08-13 t=201208250 area-integrated (icp) z-aved mass flux (GL08-13 t=20120825 m a s s f l ux ( x 1 0 3 k g s - 1 ) 240 220 200 180 160 140 120 alltot alltot m a s s f l ux ( x 1 0 3 k g s - 1 ) 240 220 200 180 160 140 120 icptot icptot 100 100

面積積分降水量 解析範囲 : 130 190E, 15 15N p r e c i p i t a t i o n ( x 1 0 m m h m ) area-integrated (con) of rain flux (GL08-13 t=20120825060 0.2 0.15 0.1 0.05 0 contot contot area-integrated (all) of rain flux (GL08-13 t=20120825060area-integrated (icp) of rain flux (GL08-13 t=20120825060 precipitation ( x10 3 m m h -1 m 2 ) 5 4 3 2 1 0 alltot alltot precipitation ( x10 3 m m h -1 m 2 ) 5 4 3 2 1 0 icptot icptot

面積平均 OLR 解析範囲 : 130 190E, 15 15N O L R ( W m - 2 ) 150 140 130 120 110 areal ave. (con) OLR (GL08-13 t=201208250600) con con 100 250 240 areal ave. (all) OLR (GL08-13 t=201208250600) all all 150 140 areal ave. (icp) OLR (GL08-13 t=201208250600) icp icp O L R ( W m - 2 ) 230 220 O L R ( W m - 2 ) 130 120 210 110 200 100

東西風速 降水量 海面更正気圧 東西風速 降水量 海面更正気圧の緯度分布 各解像度間に大きな差無し 解析値 観測値との顕著な差無し

Skamarock (2004) Effective resolution (~ 6-7Δx): それより小さい空間スケールの現象が モデルで計算される運動エネルギースペクトルが-5/3 則から外れる解像度 実現象で対流の存在する間隔 < 6-7Δx モデルでは現象と同様の間隔を再現できない Effective resolution 以上で 且つ 実現象に最も近いスケール (=6-7Δx) に最頻値が出現 実現象で対流の存在する間隔 > 6-7Δx モデルで対流間の距離を解像可能