Permutation principles for the change analysis of stochastic processes under strong invariance

Similar documents
Convergence of random variables. (telegram style notes) P.J.C. Spreij

7.1 Convergence of sequences of random variables

6.3 Testing Series With Positive Terms

On the detection of changes in autoregressive time series, II. Resampling procedures 1

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Asymptotic distribution of products of sums of independent random variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

7.1 Convergence of sequences of random variables

4. Partial Sums and the Central Limit Theorem

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Lecture 19: Convergence

Problem Set 4 Due Oct, 12

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

This is an introductory course in Analysis of Variance and Design of Experiments.

Sequences and Series of Functions

5. Likelihood Ratio Tests

2.2. Central limit theorem.

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

1 Introduction to reducing variance in Monte Carlo simulations

Output Analysis and Run-Length Control

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

Lecture 10 October Minimaxity and least favorable prior sequences

Berry-Esseen bounds for self-normalized martingales

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Bayesian Methods: Introduction to Multi-parameter Models

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Notes 5 : More on the a.s. convergence of sums

Notes 19 : Martingale CLT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

1 Inferential Methods for Correlation and Regression Analysis

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

Mi-Hwa Ko and Tae-Sung Kim

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

6 Sample Size Calculations

Series III. Chapter Alternating Series

Properties and Hypothesis Testing

Topic 9: Sampling Distributions of Estimators

Notes 27 : Brownian motion: path properties

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Lecture 2: Monte Carlo Simulation

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

Stochastic Simulation

Optimally Sparse SVMs

An almost sure invariance principle for trimmed sums of random vectors

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

The standard deviation of the mean

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9

Lecture 3: August 31

ST5215: Advanced Statistical Theory

Entropy Rates and Asymptotic Equipartition

Lecture 3 The Lebesgue Integral

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Introductory statistics

Distribution of Random Samples & Limit theorems

Rank tests and regression rank scores tests in measurement error models

SDS 321: Introduction to Probability and Statistics

Regression with an Evaporating Logarithmic Trend

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

Statistical Inference Based on Extremum Estimators

Chapter 6 Infinite Series

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

RATES OF APPROXIMATION IN THE MULTIDIMENSIONAL INVARIANCE PRINCIPLE FOR SUMS OF I.I.D. RANDOM VECTORS WITH FINITE MOMENTS

Central limit theorem and almost sure central limit theorem for the product of some partial sums

Application to Random Graphs

Fall 2013 MTH431/531 Real analysis Section Notes

A Proof of Birkhoff s Ergodic Theorem

Beurling Integers: Part 2

LECTURE 8: ASYMPTOTICS I

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

Chapter 6 Principles of Data Reduction

INFINITE SEQUENCES AND SERIES

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

1 Review of Probability & Statistics

Chapter 6 Sampling Distributions

Topic 9: Sampling Distributions of Estimators

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Asymptotic Results for the Linear Regression Model

Simulation. Two Rule For Inverting A Distribution Function

Kernel density estimator

Lecture 7: Properties of Random Samples

There is no straightforward approach for choosing the warmup period l.

LECTURE 14 NOTES. A sequence of α-level tests {ϕ n (x)} is consistent if

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales.

MAT1026 Calculus II Basic Convergence Tests for Series

BIRKHOFF ERGODIC THEOREM

Monte Carlo Integration

Resampling in the frequency domain of time series to determine critical values for change-point tests

Self-normalized deviation inequalities with application to t-statistic

Transcription:

Permutatio priciples for the chage aalysis of stochastic processes uder strog ivariace Claudia Kirch, Josef Steiebach September 2, 2004 Abstract Approximatios of the critical values for chage-poit tests are obtaied through permutatio methods. Both, abrupt ad gradual chages are studied i models of possibly depedet observatios satisfyig a strog ivariace priciple, as well as gradual chages i a i.i.d. model. he theoretical results show that the origial test statistics ad their correspodig permutatio couterparts follow the same distributioal asymptotics. Some simulatio studies illustrate that the permutatio tests behave better tha the origial tests if performace is measured by the α- ad β-error, respectively. Itroductio A series of papers has bee published o the use of permutatio priciples for obtaiig reasoable approximatios to the critical values of chage-poit tests. his approach was first suggested by Atoch ad Hušková [] ad later pursued by other authors cf. Hušková [7] for a recet survey. But, so far, it has mostly bee dealt with abrupt chages ad idepedet observatios. I may practical applicatios, however, smooth gradual chages are more realistic, so are depedet observatios. I this paper we shall discuss the use of permutatio priciples i the followig three models: Gradual chage i the mea of idepedet, idetically distributed i.i.d. observatios Hušková ad Steiebach [8] ivestigated the followig model: γ i m X i = µ + d + e i, i =,...,,. + where x + = 0, x; µ, d = d, ad m = m are ukow parameters, ad e,..., e are i.i.d. radom variables with Ee i = 0, 0 < var e i = σ 2 <, E e i 2+δ < for some δ > 0..2 he parameter γ is supposed to be kow. ote that i cotrast to abrupt chages the biggest differece i the mea here is ot d, but d m γ, ad thus depeds o, m ad γ. Oe is iterested i testig the hypotheses H 0 : m = vs. H : m <, d 0. he followig test statistic, which is based o the likelihood ratio approach i case of ormal errors {e i }, has bee used: = i kγ +X i X ˆσ k< k i2γ k iγ 2 /2, where ˆσ deotes a suitable estimator of σ. Asymptotic critical values for the correspodig test ca be chose accordig to the followig ull asymptotics cf. Hušková ad Steiebach [8]:

heorem.. Let X, X 2,... be i.i.d. r.v. s with var X = σ 2 > 0, ad E X 2+δ < for some δ > 0. he, for all x R, as, P α β x exp 2e x, where α = 2 log log ad β = β γ is as follows: i for γ > 2 : β = 2 log log + log 4π /2 2γ + ; 2γ ii for γ = 2 : β = 2 log log + log log log log log4π; 2 iii for 0 < γ < 2 : β = 2 log log + 2γ Cγ /2γ+ H 2γ+ log log log + log, 22γ + π2 2γ/2γ+ with H γ as i Remark 2.2.0 of Leadbetter et al. [0] e.g. H =, H 2 = / π, ad C γ = 2γ + 0 x γ x + γ x γ γx γ dx. Moreover, ˆσ is assumed to be a estimator of σ satisfyig ˆσ σ = o P log log as. 2 Abrupt chage i the mea or variace of a stochastic process uder strog ivariace his model has bee cosidered by Horváth ad Steiebach i [6]. Suppose oe observes a stochastic process {Zt : 0 t < } havig the followig structure: { at + by t, 0 t, Zt = Z + a t + b Y t,.3 < t, where a, b, a, b are ukow parameters, ad {Y t : 0 t < } resp. {Y t : 0 t < } are uobserved stochastic processes satisfyig the followig strog ivariace priciples: For every > 0, there exist two idepedet Wieer processes {W t : 0 t } ad {W t : 0 t }, ad some δ > 0, such that, for, sup Y t W t = O /2+δ a.s..4 0 t ad sup Y t W t = O /2+δ a.s..5 0 t Moreover, we assume Y 0 = 0 ad Y 0 = 0. It should be oted that oly weak ivariace has bee assumed i [6], istead of the strog rates of.4 ad.5, which are required for later use here. Moreover, the processes {Zt}, {Y t}, ad {Y t} could be replaced by a family of processes {Z t}, {Y t}, ad {Y t}, > 0, sice the asymptotic aalysis is merely based o the approximatig family of Wieer processes {W t} ad {W t}, respectively. Oe is iterested i testig the hypothesis of o chage, i.e. H 0 : =, agaist the alterative of a chage i the mea at 0,, i.e. H : 0 < < ad a a, resp. a chage i the variace at 0,, i.e. H 2 : 0 < < ad b b, but a = a. 2

Basic examples satisfyig coditios.3-.5 are partial sums of i.i.d. radom variables ad reewal processes based o i.i.d. waitig times, but also sums of depedet observatios for details we refer to Horváth ad Steiebach [6]. It is assumed, that the process {Zt : t 0} has bee observed at discrete time poits t i = t i, = i, i =. Let Z i, = Zt i Zt i ad Z i, = Zt i Zt i Z. he followig statistics will be used: M = k where Z = Z i,, ad { b k } Zi, Z,.6 resp. b2 = M = k { 2 Zi, Z, ĉ k } Z 2 i, Z 2,.7 where Z 2 = Z 2 i,, ad ĉ 2 := Z i, Z 2 2 2 Zl, Z. l= Remark.. he statistic M uses a slightly differet variace estimator ĉ 2 tha the oe give i Horváth ad Steiebach [6]. It possesses, however, the same asymptotic behavior, sice the ratio of the two ormalizatios coverges i probability to uder the ull hypothesis, ad to some positive costat uder the alterative cf. heorem 4.5.2 i Kirch [9]. his modificatio is ecessary for applyig the permutatio method, sice, uder the alterative, the permutatio statistic correspodig to the statistic used i [6] does ot coverge to sup 0 t Bt, but to c sup 0 t Bt, c > 0, c i geeral, where c is the asymptotic ratio of the two variace estimators. Here {Bt : 0 t } deotes a Browia bridge. he followig ull asymptotics hold uder the above coditios cf. Horváth ad Steiebach [6]: heorem.2. If = ad = o 2/2+δ as, the, uder H 0, M D sup Bt, 0 t where {Bt : 0 t } is a Browia bridge. heorem.3. If = ad = o /2 /2+δ as, the, uder H 0, M D sup Bt, 0 t where {Bt : 0 t } is a Browia bridge. 3 Gradual chage i the mea of a stochastic process uder strog ivariace his model has bee cosidered by Steiebach i [3]. Suppose oe observes a stochastic process {St : 0 t < } havig the followig structure: { at + by t, 0 t, St := S + at + dt +γ + b Y t,.8 < t, where a, b, b ad {Y t}, {Y t} are as i model 2 above, d = d is ukow, γ > 0 is kow. Agai, the biggest differece i the mea here depeds o, ad γ, similarly as i the first model. ote that, istead of.4, Steiebach [3] assumed the followig weak ivariace priciple for the process 3

{Y t : 0 t < }, amely that, for every > 0, there is a Wieer process {W t : 0 t } such that sup Y Y t W t /t /2+δ = O P..9 t he reaso is that small approximatio rates were required ear the chage-poit, but oly i a weak sese, whereas we eed strog approximatios for our permutatio priciples below. Here, too, the processes {Zt}, {Y t}, ad {Y t} could be replaced by a family of processes {Z t}, {Y t}, ad {Y t}, > 0. Oe is ow iterested i testig the ull hypothesis of o chage i the drift, i.e. H 0 : = agaist the alterative of a smooth gradual chage i the drift, i.e. H : 0 < <, d 0. Basic examples fulfillig the coditios above are agai partial sums of i.i.d. radom variables ad reewal processes based o i.i.d. waitig times cf. Steiebach [3] for more details. As i model 2, we assume that we have observed {St : t 0} at discrete time poits t i = i, ad set S i, = St i St i. he followig test statistic is used: 2 = b 2 k< i kγ + S i, S k i2γ where S = S i,, ad b 2 = Si, S 2. k iγ 2 /2,.0 Steiebach assumed i [3] a slightly differet weight, which is asymptotically equivalet to the oe used above. However, it turs out, that the above weight gives much better results for the permutatio statistic, which is due to the fact, that it is the imum-likelihood statistic uder Gaussia errors. he results obtaied i [3] remai valid. Remark.2. he magitude of d is completely differet from that of d i the first model. However, d := d + γ +γ is comparable to d, which ca easily be see via the mea value theorem. Similar to heorem., the followig ull asymptotic applies cf. Steiebach [3]: heorem.4. If.9 holds, = ad = O as, the, uder H 0, for all x R : P α 2 β x exp 2e x, where α = 2 log log ad β = β γ is as i heorem. with replacig. 2 Rak ad permutatio statistics i case of a gradual chage uder i.i.d. errors I order to derive distributioal asymptotics for the permutatio statistics, we shall make use of the followig theorem for the correspodig rak statistics. I the case γ = was prove by Slabý i [2]. heorem 2.. Let R = R,..., R be a radom permutatio of,...,, ad a,..., a be scores satisfyig a i a 2 D, 2. ad a i a 2+δ D 2, 2.2 4

where D, D 2 ad δ are some positive costats, ad a = a i. he, for fixed γ > 0 ad all x R, as P α a β x exp 2e x, where a = σ a k< i kγ +a R i a k i2γ k iγ 2 /2 ; Here σ 2 a = a i a 2, the variace of a R, α = 2 log log ad β = β γ is as i heorem.. I the proof of this theorem we apply the followig weak embeddig: heorem 2.2. Let a,..., a be scores satisfyig 2. ad 2.2. he, o a rich eough probability space, there is a sequece of stochastic processes { Π k : k } =, 2,... with { } D= { Π k : k σ 2 a } k a π i a : k, where π,..., π is a radom permutatio of, 2,...,, σa 2 := a i a 2, a = a i, ad there is a fixed Browia bridge {Bt : 0 t } such that, for 0 ν < mi, δ 22+δ, 4 k< k k ν Π k Bk/ k k = O P. he proof goes alog the lies of heorem of Eimahl ad Maso [4], by replacig the Hájek-Réyi iequality cf. [4], p. 0 resp. Lemma 3 there with the followig lemmas: Lemma 2.. Let M0 = 0, M,..., Mm, m, be a mea 0, square-itegrable martigale, ad a... am 0 be costats. he, for < s 2 ad λ > 0, P a i Mi > λ 2 s i m λ s m a s i E Mi Mi s. Proof. Cofer Lemma i Häusler ad Maso [5], or Lemma 5..2 i Kirch [9] together with Eimahl [3]. Lemma 2.2. Let a,..., a be scores with a i = 0, ad π,..., π be a radom permutatio as i heorem 2.2. he, for i ad s 2, E i a π j s 2 mi i, i j= a j s. j= Proof. Cofer Lemma 5..3. i Kirch [9] ad Maso []. ow we have the tools to prove heorem 2.: 5

Proof of heorem 2.. First ote that k k 2 k i 2γ i γ = k i γ k k k k 0 j= j γ x 2γ dx = k 2γ + k2γ+. 2 k + k i 2γ 2.3 ow, from heorem 2.2 with ν = 0, uiformly i k [, 2 ] : σ a k a R i+ a = k B = k B k k + O P + O P k. Sice { B } k D= { : k = 0,..., W k k W : k = 0,..., }, where {W t : t 0} is a stadard Wieer process, we coclude from the law of the iterated logarithm i kγ +a R i a σ a log <k< k = σ a = O P + O P <k<log <k<log <k<log i2γ k k = o P log log. k iγ 2 /2 l= lγ l γ k l+ a R i+ a k k iγ 2 /2 i2γ l= lγ l γ W k l + k l+ W k k iγ 2 /2 i2γ k l= lγ l γ k l + k iγ 2 /2 k i2γ Hece it suffices to ivestigate the imum over k [, log ]. Let := i kγ +X i l= X l k log k k 2 /2 iγ i2γ resp. := k log i kγ + Π i Π i k i2γ k iγ 2 /2 be the correspodig test statistics based o i.i.d. 0, radom variables X i resp. o the distributioally equivalet versios of a R i. We choose X i such that B k k = X i k X i, with {Bt} deotig the Browia bridge of heorem 2.2. By the same applicatio of the law of the iterated logarithm as above, i kγ +X i X i log k k = o k iγ 2 /2 P log log. Sice α β = i2γ α β + α, ad sice heorem. implies that α β has a limitig Gumbel distributio, it suffices to show that α = o P. We set Y i := Π i 6

Π i X i X, where X = X i, ad S l := l Y i. he, k log k k 2 i k γ +Y i i2γ iγ where 0 < ν < mi k log k< k k k k 2 i2γ iγ l= ν Π k B k k k S l + k l γ l γ k k l + k l k + /2 ν k log ν l= k k l γ l γ, 2 i2γ iγ δ 22+δ, 4 k< as i heorem 2.2. his theorem also implies k k which meas, that it suffices to show k k log ν l= ν k k Π k B l + k l k + /2 ν k k l 2 i2γ iγ k = O P, γ l γ = o log log /2. he latter rate ca be obtaied through a straightforward calculatio, takig 2.3 ito accout together with the followig estimate: i 2γ k k 2 i γ c γ k 2γ+ for all γ, 2.4 where c γ > 0 ad γ depeds oly o γ. his completes the proof. For details we refer to Kirch [9], Corollary 5.2.3. We are ow ready to study the followig permutatio statistic: R = i kγ +X Ri X ˆσ k< k, k iγ 2 /2 i2γ where R = R,..., R is a radom permutatio of,...,. We cosider ow the coditioal distributio of R give the origial observatios X,..., X, i.e. the radomess is oly geerated by the radom permutatio R = R,..., R. he followig theorem proves that this statistic coditioally o the give observatios has a.s. the same asymptotic behavior - both uder the ull hypothesis ad uder the alterative - as that of uder the ull hypothesis cf. heorem.. heorem 2.3. Let X,..., X be observatios satisfyig. ad.2. Moreover, let d = d D. he, for all x R, as, P α R β x X,..., X exp 2e x a.s., where α, β = β γ are as i heorem.. Proof. It is sufficiet to verify the assumptios of heorem 2. with a i = X i, i =,...,. First we have X = µ + e + d γ l= l m γ +. 7

Hece X i X 2 e i e 2 + 2d γ m i m γ +e i 2d γ l γ l= e i. It is eough to show that the secod term coverges to 0 a.s., because the, by the strog law of large umbers, lim if X i X 2 var e a.s. ow, by partial summatio, i m γ +e i = S m γ + S i i + m γ + i m γ +, 2.5 where S i := i j= e j, ad, from the law of the iterated logarithm, γ+ S i i + m γ + i m γ + = O γ+ = o a.s., i 3/4 i + m γ + i m γ + where the last estimate follows via the mea value theorem. Usig 2.5 together with the strog law of large umbers, we get ideed, as, d γ+ i m γ +e i = d m γ + γ 0 a.s. S d γ+ O the other had, for suitable costats c ad C, ad 0, Xi X 2+δ = c C e i e + d γ i m γ + S i i + m γ + i m γ + l m γ 2+δ + l= m e i 2+δ + c e 2+δ + c d 2+δ 2γ δγ + c d 2+δ a.s. m 2γ δγ 2 δ A applicatio of heorem 2. ow completes the proof. l= l γ 2+δ i 2γ+γδ 3 Permutatio statistics for chages of stochastic processes uder strog ivariace ext we study models 2 ad 3 of Sectio. For model 2, we first eed to ivestigate the asymptotic behavior of the correspodig rak statistic: 8

heorem 3.. Let R,..., R be a radom permutatio of,...,, ad a,..., a be scores satisfyig the followig coditios: ad he, as, a i = 0, k a 2 i, 3. i a2 i 0. 3.2 k a R i D sup Bt, where {Bt : 0 t } deotes a Browia bridge. Proof. It follows from heorem 24.2 i Billigsley [2]. 0 t Lemma 3.. a Let X,..., X be idepedet r.v. s with E Xi 4 D < for all i,. he X i E X i 0 a.s.. b Let {W t: t 0},, be Wieer processes ad f be a fuctio of, the W f = O f log a.s.. Proof. a It follows immediately from Markov s iequality. b Cf. Kirch [9], heorem 0.0.2. I the sequel we assume that there is a --correspodece betwee ad, which is ecessary to get a coutable triagular array i, ad, i tur, allows us to use the precedig lemma. Moreover, we assume = θ, 0 < θ, ad = o 2/2+δ. Let = = θ + o ad b Y i Y i, i, Y i = by Y + b Y +, i = +, b Y i Y 3.3 i, i + 2. Lemma 3.2. a It holds, as, b i For s = 2, 3, 4, as, Y = log Y i = O a.s. s 2/2 s/2 where W has a stadard ormal distributio. ii For ν > 0, as, Y i s E W s θb s + θb s a.s., ν 2/2 ν/2 Yi Y ν = O a.s. c For ν > 0, as, ν 2/2 ν/2 i Yi Y ν = o a.s. 9

Proof. he proof makes use of.3.5 i combiatio with Lemma 3. for details cofer Kirch [9], heorem 0.0.. We are ow prepared to ivestigate the followig permutatio statistics ad { k } M R = ZRi, Z, k b { k 2 M R = Z R k ĉ i, Z 2 }. Here agai, R = R,..., R deotes a radom permutatio of,...,. heorem 3.2. Let {Zt : t 0} be a process accordig to model.3. Let = θ, 0 < θ, = o 2/2+δ, ad i b also a = a. he, for all x R, as, a b P M R x Zt, 0 t P sup Bt x 0 t P M R x Zt, 0 t P sup Bt x 0 t a.s. a.s., where {Bt : 0 t } is a Browia bridge. Proof. First ote that, for the icremets of {Zt}, we have a + Y i, i, Z i, = a + a + + Y +, i = +, a + Y i, i + 2, with Y i as i 3.3. ow, for the proof of a, cosider the scores a i = Z i, Z i,, i =,...,. Obviously, a i = 0 ad a2 i =, which meas that it is sufficiet to verify assumptio 3.2 of heorem 3.. I the sequel, c ad C deote suitable costats which may be differet i differet places. We first cosider the case θ < ad a a. Here, for sufficietly large, ˆb b2 = = Zi, 2 Z 2 a 2 i a2 + Y i 2 Y 2 2 a + a Y + 2ab Y + 2a b Y Y + + 2 a + a + Y + 3.4 c a.s., 0

where a, i, a i = a + a +, i = +, a, i + 2, ad a = a i = a + a. he last iequality i 3.4 follows from the fact that the first terms are the domiatig oes. Ideed, sice θ <, a a, for sufficietly large, a 2 i a2 a 2 2 + a 2 a 2 2 a 2 2 2aa = + o a 2 θ θ + a 2 θ θ 2aa θ θ = + o θ θa a 2 a 2 2 a 2 2 3.5 c a.s. ext we prove that the other terms are of smaller order ad hece are egligible. Lemma 3. b gives 2ab Y + 2a b Y Y + = 2ab W + 2a b log = O a.s. W W + + O /2+δ Sice ad +, we also get 2 a + a + Y + 2 a + a b W W + a + a b W + /2+δ + O log = O a.s. Lemma 3.2 further implies Y i 2 Y 2 2 a + a Y = O + log + log a.s., which proves 3.4. ote that a a, i, a i a = a a ϑ, i = +, a a, i + 2, for some 0 ϑ, hece a i a 2 = i a a 2, /2, a a 2, > /2. 3.6 3.7

O combiig 3.4, Lemma 3.2 a ad Lemma 3. b i we fially get 3.2, sice i a2 i 2 b 2 2 c 0 a i a 2 + 2 i b 2 Y i 2 Y 2 a a 2 + 2 c a.s. Y i Y 2 i 3.8 O the other had, if θ = or a = a, we obtai from Lemma 3.2, b2 = Z i, Z 2 = θb 2 + θb 2 c > 0 Y i 2 Y 2 a.s., for sufficietly large. Usig Lemma 3.2 c, we arrive at 3.2, i.e. which completes the proof of a. i a2 i = b2 0 a.s., Y i Y 2 i 3.9 3.0 For the proof of b, cosider a i = ĉ Yi Y 2 l= Yl Y 2. It suffices agai to verify the assumptios of heorem 3.. Sice a = a, we get a2 i =. Similarly as above, Lemma 3.2 gives ad b 2 = 2 Yi Y 4 3 θb 4 + θb 4 a.s., 2 Y i 2 Y 2 θb 2 + θb 2 2 From Jese s iequality we coclude lim ĉ2 = lim 2 So, a applicatio of Lemma 3.2 results i k a2 k = ĉ 2 C 2 0 which completes the proof of b. Yi Y 4 b2 2 = 3θb 4 + θb 4 θb 2 + θb 2 2 2θb 4 + θb 4 > 0 k Yk Y 2 k Y k Y 4 + a.s., a.s. Yi Y 2 2 2 Y i Y 2 a.s. 3. Fially we tur to model 3 of Sectio ad ivestigate the permutatio aalogue of.0, i.e. the statistic 2 R = i kγ + S Ri, S b 2 k< k i2γ k iγ 2 /2. he followig asymptotic applies: 2

heorem 3.3. Let {St : t 0} be a process accordig to model.8. Assume = θ, 0 < θ, ad log = omi 2/2+δ, /2+γ. he, for all x R, as, P α 2 R β x St, 0 t exp 2e x a.s., where α, β = β γ are as i heorem. with replacig. Proof. First ote that, for the icremets of {St}, we have Y i, i, S i, = Y + + d +γ +, i = +, Yi + d i +γ +γ i, i + 2. I case of the ull hypothesis, i.e. for θ =, we ca immediately verify the assumptios of heorem 2. for a i := S i, by usig Lemma 3.2. O the other had, i case of θ <, we use a i := S +γ i,. First, via the mea value theorem, +δ +γ2+δ i +γ i +γ 2+δ + + +γ2+δ = O i= +2 +δ +γ2+δ +γ2+δ 2+δ = O, which, together with Lemma 3.2, gives +γ S i, +γ S 2+δ = O a.s. I order to verify the secod assumptio of heorem 2., we first realize, by usig partial summatio, the mea value theorem ad Lemmas 3. resp. 3.2, that i +γ +γ i 2+2γ Y i i= +2 +γ + + Y + = 2 Y +γ 2+2γ 2+2γ k= +2 +γ by + b Y k k + +γ 2 k +γ + k +γ by 2+2γ + b Y + + 2 +γ 2 + +γ = o + O by + b Y k +γ k= + log = o + O = o a.s. /2+γ + O /2+δ +γ 3.2 3

ext we have 2+2γ i= +2 + γ2 i +γ i +γ 2 + i= + 2γ i θ x 2γ + γ2 θ dx + γ2 = + o 2γ + θ2γ+, which shows that d 2 2+2γ d 2 2 2+2γ i= +2 i +γ i +γ 2 + +γ θ2γ+ + o 2γ + 2 γ 2 + θ2γ +. O combiig 3.2, 3.3 ad Lemma 3.2, we get ideed, for large, 2+2γ 2 Si, S cθ with some cθ > 0, which completes the proof. + 2+γ + 2+γ 3.3 4 Simulatios So far, we have oly prove that the permutatio priciple is asymptotically applicable for processes satisfyig models to 3. ow we wat to describe the results of some simulatio studies to get a idea, how good the permutatio method is i compariso to the origial method. 4. Gradual chages i the mea of a i.i.d. sequece I a first study, we geerated data accordig to model. usig the followig parameters: = 00, 200, ormally distributed errors Laplace distributed errors γ 90% 95% 97.5% 99% 90% 95% 97.5% 99% 00 0.25 2.602 2.883 3.32 3.439 2.73 3.063 3.405 3.753 00 0.5 2.445 2.765 3.07 3.344 2.6 2.972 3.32 3.746 00 2.338 2.626 2.887 3.229 2.439 2.80 3.58 3.663 00 2 2.226 2.506 2.768 3.093 2.332 2.74 3.092 3.585 200 0.25 2.630 2.9 3.60 3.43 2.73 3.09 3.42 3.865 200 0.5 2.483 2.778 3.007 3.253 2.565 2.923 3.244 3.694 200 2.36 2.643 2.9 3.28 2.458 2.837 3.72 3.585 200 2 2.274 2.567 2.87 3.3 2.359 2.743 3.46 3.600 able 4..: Simulated critical values uder the ull hypothesis 4

ormally distributed errors Laplace distributed errors γ d m 90% 95% 97.5% 99% 90% 95% 97.5% 99% 0.25 0 00 2.667 2.92 3.57 3.432 2.355 2.639 2.875 3.059 0.25 0.25 00 25 2.676 2.953 3.9 3.452 2.325 2.620 2.857 3.070 0.25 0.5 00 25 2.73 2.96 3.86 3.474 2.306 2.578 2.846 3.045 0.25 00 25 2.678 2.894 3.32 3.372 2.204 2.475 2.826 2.903 0.25 2 00 25 2.366 2.68 2.765 3.033.908 2.69 2.406 2.524 0.25 4 00 25.637.782.940 2.59.396.537.70.83 0.25 0.25 00 50 2.664 2.938 3.82 3.436 2.347 2.63 2.899 3.33 0.25 0.5 00 50 2.658 2.932 3.75 3.440 2.336 2.68 2.892 3.69 0.25 00 50 2.590 2.845 3.09 3.360 2.234 2.552 2.820 3.26 0.25 2 00 50 2.27 2.488 2.703 2.972 2.008 2.272 2.55 2.7 0.25 4 00 50.566.730.884 2.065.468.624.725.887 0.25 0.25 00 75 2.696 2.929 3.67 3.432 2.344 2.633 2.883 3.042 0.25 0.5 00 75 2.683 2.93 3.58 3.437 2.340 2.629 2.884 3.029 0.25 00 75 2.645 2.87 3.03 3.369 2.304 2.592 2.859 2.996 0.25 2 00 75 2.443 2.643 2.852 3.27 2.26 2.45 2.577 2.802 0.25 4 00 75.866 2.063 2.230 2.428.785.965 2.077 2.279 0.5 0 00 2.570 2.774 3.03 3.305 2.224 2.593 2.764 3.059 0.5 0.25 00 25 2.605 2.82 3.05 3.343 2.222 2.577 2.803 3.090 0.5 0.5 00 25 2.64 2.87 3.063 3.330 2.85 2.548 2.848 3.09 0.5 00 25 2.56 2.762 3.05 3.278 2.02 2.406 2.85 3.04 0.5 2 00 25 2.306 2.557 2.737 3.08.9 2.62 2.556 2.635 0.5 4 00 25.67.849 2.028 2.225.439.644.784.930 0.5 0.25 00 50 2.583 2.804 3.050 3.336 2.23 2.567 2.789 3.4 0.5 0.5 00 50 2.572 2.807 3.049 3.344 2.225 2.50 2.828 3.47 0.5 00 50 2.542 2.778 3.09 3.290 2.57 2.457 2.844 3.47 0.5 2 00 50 2.345 2.580 2.808 3.060 2.08 2.304 2.668 2.92 0.5 4 00 50.794.989 2.7 2.390.670.842 2.039 2.8 0.5 0.25 00 75 2.556 2.789 3.047 3.32 2.234 2.587 2.769 3.053 0.5 0.5 00 75 2.55 2.790 3.042 3.338 2.237 2.584 2.780 3.039 0.5 00 75 2.530 2.788 3.038 3.326 2.227 2.536 2.799 2.989 0.5 2 00 75 2.465 2.73 2.968 3.27 2.2 2.438 2.756 2.897 0.5 4 00 75 2.2 2.403 2.623 2.864 2.007 2.24 2.49 2.63 0 00 2.462 2.667 2.907 3.209 2.8 2.45 2.73 3.059 0.25 00 25 2.480 2.684 2.925 3.29 2.097 2.448 2.79 3.097 0.5 00 25 2.460 2.682 2.92 3.203 2.087 2.450 2.800 3.5 00 25 2.490 2.655 2.93 3.73 2.07 2.43 2.768 3.095 2 00 25 2.279 2.495 2.723 2.993.979 2.86 2.582 2.863 4 00 25.794.975 2.58 2.366.579.775 2.092 2.56 0.25 00 50 2.469 2.699 2.92 3.26 2.2 2.457 2.767 3.086 0.5 00 50 2.474 2.72 2.925 3.224 2.8 2.458 2.794 3.05 00 50 2.450 2.736 2.925 3.9 2.097 2.454 2.86 3.8 2 00 50 2.397 2.649 2.854 3. 2.02 2.320 2.762 3.048 4 00 50 2.4 2.34 2.544 2.766.848 2.73 2.485 2.629 0.25 00 75 2.467 2.682 2.907 3.23 2.30 2.454 2.744 3.059 0.5 00 75 2.466 2.694 2.90 3.209 2.36 2.459 2.756 3.059 00 75 2.469 2.75 2.922 3.23 2.44 2.468 2.776 3.053 2 00 75 2.462 2.737 2.925 3.85 2.44 2.459 2.80 3.025 4 00 75 2.35 2.695 2.867 3.34 2.75 2.447 2.790 2.907 2 0 00 2.336 2.629 2.87 3.3 2.029 2.362 2.73 3.059 2 0.25 00 25 2.35 2.640 2.828 3.34 2.03 2.375 2.753 3.083 2 0.5 00 25 2.36 2.653 2.820 3.2 2.036 2.377 2.748 3.099 2 00 25 2.397 2.649 2.826 3.088 2.072 2.357 2.733 3.05 2 2 00 25 2.38 2.57 2.755 3.003 2.00 2.297 2.68 3.05 2 4 00 25 2.046 2.27 2.442 2.688.753 2.096 2.42 2.554 2 0.25 00 50 2.340 2.632 2.823 3.20 2.03 2.367 2.746 3.066 2 0.5 00 50 2.346 2.638 2.826 3.26 2.034 2.375 2.759 3.07 2 00 50 2.349 2.64 2.820 3.30 2.036 2.38 2.755 3.078 2 2 00 50 2.357 2.657 2.820 3.05 2.052 2.376 2.757 3.073 2 4 00 50 2.33 2.587 2.798 3.02 2.37 2.345 2.78 2.997 2 0.25 00 75 2.336 2.630 2.86 3.8 2.029 2.364 2.735 3.060 2 0.5 00 75 2.336 2.630 2.87 3.2 2.030 2.365 2.738 3.06 2 00 75 2.337 2.633 2.88 3.24 2.030 2.369 2.744 3.063 2 2 00 75 2.338 2.629 2.82 3.9 2.034 2.373 2.755 3.066 2 4 00 75 2.342 2.640 2.89 3.9 2.042 2.384 2.768 3.070 ormally distributed errors Laplace distributed errors m 90% 95% 97.5% 99% 90% 95% 97.5% 99% 200 2.646 2.92 3.7 3.380 2.547 2.853 3.50 3.332 200 50 2.648 2.97 3.097 3.388 2.529 2.822 3.076 3.29 200 50 2.636 2.888 3.088 3.383 2.483 2.774 2.969 3.239 200 50 2.543 2.79 2.985 3.238 2.349 2.583 2.847 3.025 200 50 2.234 2.427 2.609 2.844 2.002 2.24 2.42 2.597 200 50.542.698.845.988.408.56.680.869 200 00 2.643 2.898 3.093 3.372 2.543 2.830 3.098 3.269 200 00 2.622 2.862 3.067 3.349 2.506 2.76 2.970 3.203 200 00 2.52 2.75 2.94 3.27 2.349 2.565 2.805 2.99 200 00 2.73 2.376 2.530 2.742.990 2.79 2.346 2.559 200 00.499.635.774.929.386.527.644.788 200 50 2.660 2.920 3.4 3.400 2.548 2.843 3.26 3.300 200 50 2.668 2.907 3.6 3.47 2.528 2.809 3.086 3.232 200 50 2.65 2.876 3.35 3.375 2.443 2.722 2.899 3.05 200 50 2.449 2.720 2.96 3.204 2.223 2.435 2.63 2.807 200 50.936 2.72 2.355 2.549.724.934 2.057 2.227 200 2.490 2.772 3.057 3.266 2.42 2.744 3.028 3.32 200 50 2.58 2.802 3.020 3.275 2.397 2.709 2.987 3.280 200 50 2.528 2.82 2.969 3.26 2.360 2.679 2.99 3.206 200 50 2.465 2.74 2.937 3.50 2.238 2.520 2.769 2.984 200 50 2.26 2.439 2.642 2.830.962 2.99 2.400 2.575 200 50.604.776.99 2.087.434.583.728.927 200 00 2.57 2.800 3.006 3.269 2.397 2.725 3.002 3.26 200 00 2.520 2.805 2.982 3.246 2.372 2.660 2.950 3.77 200 00 2.467 2.78 2.972 3.78 2.287 2.607 2.779 3.000 200 00 2.247 2.532 2.700 2.98 2.063 2.36 2.449 2.66 200 00.73.902 2.0 2.247.568.740.879 2.050 200 50 2.504 2.804 3.038 3.265 2.47 2.735 3.03 3.275 200 50 2.522 2.80 3.000 3.275 2.400 2.78 3.000 3.220 200 50 2.54 2.757 3.04 3.288 2.367 2.696 2.933 3.7 200 50 2.462 2.734 2.958 3.224 2.280 2.577 2.73 2.928 200 50 2.20 2.458 2.67 3.039.996 2.207 2.452 2.553 200 2.372 2.702 2.90 3.8 2.306 2.598 2.93 3.32 200 50 2.369 2.709 2.924 3.76 2.286 2.585 2.872 3.265 200 50 2.37 2.707 2.907 3.44 2.232 2.606 2.870 3.94 200 50 2.345 2.649 2.873 3.072 2.82 2.492 2.725 3.004 200 50 2.76 2.470 2.659 2.908.985 2.22 2.44 2.630 200 50.722.93 2.05 2.264.530.737.856 2.036 200 00 2.373 2.709 2.92 3.82 2.294 2.590 2.887 3.273 200 00 2.376 2.74 2.932 3.74 2.277 2.67 2.874 3.26 200 00 2.367 2.699 2.9 3.33 2.230 2.587 2.89 3.079 200 00 2.286 2.603 2.82 3.079 2.33 2.426 2.666 2.852 200 00 2.042 2.283 2.500 2.86.855 2.074 2.292 2.456 200 50 2.370 2.706 2.97 3.87 2.302 2.597 2.9 3.303 200 50 2.376 2.70 2.922 3.83 2.296 2.592 2.894 3.283 200 50 2.389 2.70 2.937 3.74 2.289 2.65 2.877 3.240 200 50 2.379 2.675 2.926 3.47 2.249 2.607 2.837 3.37 200 50 2.327 2.65 2.845 3.4 2.75 2.546 2.744 2.96 200 2.287 2.63 2.828 3.4 2.220 2.550 2.853 3.272 200 50 2.29 2.66 2.84 3.097 2.97 2.550 2.857 3.23 200 50 2.280 2.65 2.892 3.085 2.97 2.537 2.842 3.98 200 50 2.254 2.637 2.827 3.054 2.53 2.493 2.809 3.086 200 50 2.95 2.527 2.729 3.078 2.050 2.35 2.627 2.779 200 50.936 2.200 2.435 2.75.768 2.009 2.256 2.384 200 00 2.286 2.69 2.840 3.098 2.26 2.552 2.853 3.266 200 00 2.290 2.620 2.846 3.0 2.98 2.55 2.852 3.24 200 00 2.294 2.69 2.874 3.088 2.203 2.547 2.845 3.220 200 00 2.275 2.62 2.84 3.06 2.8 2.523 2.83 3.5 200 00 2.227 2.553 2.768 3.099 2.086 2.430 2.692 2.84 200 50 2.288 2.63 2.827 3.06 2.220 2.549 2.852 3.269 200 50 2.288 2.62 2.830 3.098 2.29 2.549 2.85 3.266 200 50 2.289 2.64 2.834 3.00 2.29 2.552 2.850 3.260 200 50 2.29 2.65 2.843 3.0 2.2 2.55 2.846 3.257 200 50 2.295 2.620 2.842 3.093 2.23 2.538 2.836 3.255 able 4..2: Simulated critical values usig the permutatio method 5

γ 90%-Quatile 95%-Quatile 97.5%-Quatile 99%-Quatile 00 0.5.738 2.50 2.554 3.082 00 2.298 2.70 3.4 3.643 00 2 2.30 2.542 2.946 3.474 200 0.5.868 2.263 2.649 3.55 200 2.353 2.747 3.34 3.640 200 2 2.92 2.586 2.973 3.479 able 4..3: Asymptotic critical values m = 4, 2 ad 3 4, d = 0, 4, 2,, 2, 4, γ = 4, 2, ad 2, ormally ad Laplace distributed errors each stadardized. his gives 256 combiatios of the above parameters ote that we are i the case of the ull hypothesis for d = 0. First we compare the exact critical values with the asymptotic oes by geeratig 0, 000 series X,..., X accordig to the ull hypothesis. he critical values we got from these series ca be foud i able 4... For compariso, able 4..3 shows the asymptotic oes γ = 4 is missig, sice H is ukow cf. also 4 Remark 2.2.0 i Leadbetter et al. [0]. First ote that the asymptotic critical values are rather too small especially for γ = 2. 90%-Quatile 95%-Quatile 97.5%-Quatile 99%-Quatile γ d simul. asym. simul. asym. simul. asym. simul. asym. 0.5 00 0 9.7 4.5 5. 9.7 2.2 8.0 0.7 2.0 0.5 00 0.25 84.8 57.2 9. 75.2 94.3 87.5 96.4 95.2 0.5 00 0.5 75.6 40.6 84.4 64.7 90.4 80.4 95. 93. 0.5 00 28.2 8.3 40.6 20.4 5.6 36.8 63. 62.4 0.5 00 2 0.2 0 0.3 0 0.6 0.6.2 2.2 0.5 00 4 0 0 0 0 0 0 0 0 0.5 200 0 0.0 33.7 5.3 6.5 2.7 7.0 0.5.5 0.5 200 0.25 8.9 5.9 89. 73.3 92.9 86.6 96.6 95.5 0.5 200 0.5 57.3 27.6 69.2 47.7 77.3 65.2 85.4 8.9 0.5 200 6.9.8 0. 4.8 6.3 0.2 25.3 24.5 0.5 200 2 0 0 0 0 0 0 0 0 0.5 200 4 0 0 0 0 0 0 0 0 00 0 9.2 9.5 4.8 3.2 2..3 0.6 0.2 00 0.25 87.2 87.2 93.5 94.7 96.4 98. 98.7 99.9 00 0.5 8.0 80.6 88.8 9.2 93.6 96.2 96.8 99. 00 60.9 62. 7.8 78.9 82.8 90.6 89.2 97.5 00 2 2.2 4.6 8.6 26.6 25.8 45.0 37.7 7.5 00 4 0 0 0 0 0 0.3 0. 3.2 200 0.4 0.8 6.0 3.8 3.0.4.3 0.2 200 0.25 84.9 86.0 92.5 94.8 95.9 98.0 98.4 99.2 200 0.5 76.9 77.2 84.8 87.9 90.2 94.7 94.6 98.5 200 4.0 43.4 54.5 6.7 65.7 74.9 74.4 88.6 200 2 0.8 0.9.2 2.6 3.2 7.8 6.4 2 200 4 0 0 0 0 0 0 0 0 able 4..4: Simulated α- resp. β-errors i %, 000 repetitios, m = 2 6

90% 95% 97.5% 99% 90% 95% 97.5% 99% Partial sums Poisso Process 00.65.295.409.564.56.283.398.554 200.90.328.446.603.82.30.426.586 able 4.2.: Simulated critical values uder the ull hypothesis ext we were iterested i the critical values obtaied via permutatio, which we simulated usig the followig algorithm:. Geerate a series X,..., X accordig to the give parameters. 2. Geerate a radom permutatio R = R,..., R of,..., ad calculate R. 3. Repeat step 2 0, 000 times. 4. Calculate the empirical quatiles of these 0, 000 values. he result ca be foud i able 4..2. It is importat that, for the differet combiatios of parameters, we always used the same seed i step, which meas that we also always used the same permutatios for the calculatio of the empirical quatiles as log as the series had the same legth. We realize, that the quatiles are quite good, but decrease the more obvious the chage which is quite surprisig cosiderig that the test statistic icreases if there is a chage cf. Hušková ad Steiebach [8], Sectio 4. I additio, we approximated the α- resp. β-errors usig the followig simulatio:. Geerate a series X,..., X accordig to the give parameters. 2. Calculate the critical values usig the permutatio priciple compare steps 2-4 above. 3. Calculate the value of the statistic ad see, if we had rejected the ull hypothesis usig the quatiles from step 2 resp. the asymptotic oes. 4. Repeat steps -3, 000 times. 5. Calculate the empirical α- resp. β-errors from the, 000 simulatios above. able 4..4 cotais the results for ormally distributed errors ad a chage at 2. We realize that both methods give good results for γ > 2. For γ = 2 the α-error is far too high for the asymptotic method, especially with the 90%- ad 95%-quatile, which is due to the fact, that the asymptotic critical value is too small compare ables 4.. ad 4..3. Moreover, we were iterested i the stadard deviatio of the critical values obtaied by the permutatio method. Uder the ull hypothesis = 00, γ = 2, ormally distributed errors we got a stadard deviatio of 0.82 for the 90%-quatile ad of 0.265 for the 99%-quatile. he result is similar for differet parameters. Here we used, 000 trials of step to 4 of the first simulatio described above. For our simulatios we used the software package R, Versio.2.3. O a Celero with 466 MHz ad 384 MB RAM the calculatio of the permutatio quatiles takes approximately 0 secods i the case of 00 observatios, ad 30 secods i the case of 200 usig 0, 000 permutatios. his meas that the method is ideed applicable. 4.2 Chage i the mea of a stochastic process uder strog ivariace he followig simulatios are based o partial sums of ormally distributed radom variables with variace cf. Horváth ad Steiebach [6], Example., ad o a Poisso process cf. Horváth ad Steiebach [6], Example.2. More specifically, we simulated the icremets of the partial sums as i.i.d. r.v. s, ad the icremets of the Poisso process were take at times, 2,... istead of i, i =,...,, sice this meas oly a scalig of the uderlyig r.v. s. Other tha that, we used the followig parameters: 7

90% 95% 99%.224.358.628 able 4.2.2: Asymptotic quatiles = 00, 200 = 4, 2, 3 4 a a = 0,, 2, 3, 4 Here is the chage poit, ad we are i the case of the ull hypothesis for a a = 0. Oce agai we geerated 0, 000 series of icremets Z,..., Z for the differet parameters uder the ull hypothesis. he resultig quatiles ca be foud i able 4.2.. he asymptotic critical values are give i able 4.2.2 for compariso. First ote that the asymptotic quatiles are slightly too large. Moreover, we realize that the exact oes are a little larger for the partial sums tha for the Poisso process. o study the critical values obtaied from the permutatio method, we used the same algorithm as i Sectio 4.. he results ca be foud i able 4.2.3. We realize that these critical values give better estimates tha the asymptotic oes. It also does ot seem to be importat where exactly the chage poit is located. ext we simulated the α- resp. β-errors, as we did i Sectio 4., with a chage at = 3 4. he results ca be foud i able 4.2.4. Expectedly, the α-errors are smaller for the asymptotic method, but the a a 90% 95% 97.5% 99% 90% 95% 97.5% 99% Partial sums Poisso Process 00 0.75.30.423.557.4.273.393.547 00 25.67.297.405.532.73.32.420.545 00 25 2.65.290.403.54.72.294.407.532 00 25 3.60.296.42.540.72.3.44.590 00 25 4.66.296.45.55.65.29.406.55 00 50.67.30.47.563.73.306.45.542 00 50 2.73.307.426.567.64.290.407.574 00 50 3.8.33.435.590.6.29.402.55 00 50 4.84.324.44.589.60.288.397.557 00 75.65.300.42.546.67.284.45.575 00 75 2.70.304.404.547.64.292.408.547 00 75 3.75.295.48.56.74.299.42.534 00 75 4.7.296.422.578.65.299.404.55 200 0.90.328.455.589.79.3.47.568 200 50.85.3.438.579.84.37.434.579 200 50 2.77.306.424.567.80.308.426.555 200 50 3.80.307.429.555.84.33.423.553 200 50 4.80.305.428.555.86.34.427.563 200 00.8.35.435.586.96.323.450.583 200 00 2.80.32.423.55.90.36.442.574 200 00 3.74.34.422.545.83.35.43.56 200 00 4.8.3.425.560.82.3.428.569 200 50.85.324.442.588.8.30.439.575 200 50 2.85.325.449.583.92.330.449.580 200 50 3.83.37.446.590.8.33.433.588 200 50 4.8.35.44.597.94.330.450.63 able 4.2.3: Simulated critical values usig the permutatio method 8

90%-quatile 95%-quatile 99%-quatile a a simul. asym. simul. asym. simul. asym. Partial sums 00 0 8.7 6.4 4.4 3.4.0 0.7 00 2.3 3.0 4.5 8.0 2.0 27.6 00 2 0 0 0 0 0 0 00 3 0 0 0 0 0 0 00 4 0 0 0 0 0 0 200 0 9.7 7.8 5. 3.8 0.7 0.3 200 0 0 0 0 0.7 0.7 200 2 0 0 0 0 0 0 200 3 0 0 0 0 0 0 200 4 0 0 0 0 0 0 Poisso Process 00 0 9.9 7.2 5.0 3. 0.9 0.4 00 9.6 2.4 7.2 20.6 36. 43.4 00 2 0 0. 0. 0. 0.3 0.8 00 3 0 0 0 0 0 0 00 4 0 0 0 0 0 0 200 0 0. 8.2 5.0 3.6 0.2 0.2 200 0.7 0.8.6 2. 5.0 6.0 200 2 0 0 0 0 0 0 200 3 0 0 0 0 0 0 200 4 0 0 0 0 0 0 able 4.2.4: Simulated α- resp. β-errors i %, 000 trials, = 3 4 β-errors are larger. Particularly, this is sigificat for smaller samples ad i case of the Poisso process. I the latter cases we actually do get better results usig the permutatio method. Moreover, we were iterested i the stadard deviatio of the critical values obtaied by the permutatio method. Uder the ull hypothesis Poisso process, =00, we got a stadard deviatio of 0.0 for the 90%-quatile ad of 0.09 for the 99%-quatile, for the partial sums the stadard deviatio was eve smaller. he results are comparable for differet parameters. As before, we used, 000 repetitios of step to 4 of the first simulatio above. Agai, computig time is ot a problem here. For example, the calculatio of the permutatio quatiles for a series of legth 00 takes approximately 3 secods, ad for legth 200 approximately 5 secods, usig a Celero with 466 MHz ad 384 MB RAM ad the software package R, Versio.2.3. 4.3 Gradual chage i the mea of a stochastic process uder strog ivariace he followig simulatios are based o partial sums of ormally distributed r.v. with variace cf. Steiebach [3], Example. ad o a Poisso process cf. Steiebach [3], Example.2. More precisely, we simulated the icremets of the partial sums as i.i.d. r.v. s, ad the icremets of the Poisso process were take at times, 2,... istead of i, i =,...,, as above. he followig parameters were chose: = 00, 200 = 4, 2, 3 4 d = 0, 4, 2,, 2, 4 Here is the chage poit, ad the ull hypothesis is give for d = 0. d is as i Remark.2 i order to be able to compare the results with those of Sectio 4.. More precisely, the icremets of the chage 9

Partial sums Poisso process γ d 90% 95% 97.5% 99% 90% 95% 97.5% 99% 0.25 0 00 2.667 2.905 3.27 3.397 2.584 2.974 3.302 4.05 0.25 0.25 00 25 2.67 2.94 3.7 3.426 2.447 2.774 3.69 3.758 0.25 0.5 00 25 2.72 2.943 3.86 3.454 2.452 2.779 3.75 3.646 0.25 00 25 2.677 2.89 3.3 3.408 2.42 2.729 3.067 3.287 0.25 2 00 25 2.362 2.6 2.778 3.027 2.8 2.38 2.593 2.859 0.25 4 00 25.65.774.924 2.095.55.726.876 2.043 0.25 0.25 00 50 2.666 2.93 3.53 3.42 2.436 2.703 3.073 3.435 0.25 0.5 00 50 2.662 2.927 3.6 3.397 2.432 2.704 3.078 3.358 0.25 00 50 2.585 2.845 3.097 3.336 2.339 2.635 3.002 3.5 0.25 2 00 50 2.264 2.484 2.78 2.94 2.092 2.292 2.504 2.745 0.25 4 00 50.567.72.859 2.06.49.642.786.938 0.25 0.25 00 75 2.693 2.92 3.3 3.406 2.397 2.652 3.032 3.407 0.25 0.5 00 75 2.69 2.899 3.34 3.392 2.372 2.645 2.998 3.347 0.25 00 75 2.642 2.864 3.09 3.344 2.33 2.598 2.93 3.68 0.25 2 00 75 2.44 2.65 2.866 3.094 2.5 2.409 2.654 2.842 0.25 4 00 75.879 2.066 2.24 2.445.725.894 2.087 2.295 0.5 0 00 2.57 2.747 2.994 3.249 2.394 2.834 3.59 4.05 0.5 0.25 00 25 2.602 2.776 3.02 3.285 2.275 2.584 2.977 3.792 0.5 0.5 00 25 2.6 2.792 3.04 3.3 2.289 2.608 2.998 3.726 0.5 00 25 2.556 2.764 3.003 3.266 2.307 2.593 2.963 3.473 0.5 2 00 25 2.298 2.565 2.748 3.006 2.58 2.44 2.647 2.95 0.5 4 00 25.679.824.994 2.8.62.799.953 2.66 0.5 0.25 00 50 2.58 2.774 3.0 3.274 2.269 2.579 2.92 3.455 0.5 0.5 00 50 2.568 2.792 3.022 3.275 2.274 2.55 2.924 3.49 0.5 00 50 2.538 2.776 2.999 3.249 2.256 2.526 2.888 3.269 0.5 2 00 50 2.334 2.57 2.795 3.072 2.4 2.389 2.697 2.862 0.5 4 00 50.786.988 2.62 2.345.706.907 2.027 2.246 0.5 0.25 00 75 2.557 2.758 3 3.25 2.234 2.569 2.876 3.429 0.5 0.5 00 75 2.542 2.772 3.008 3.26 2.232 2.546 2.869 3.404 0.5 00 75 2.532 2.766 2.997 3.246 2.27 2.49 2.859 3.328 0.5 2 00 75 2.46 2.704 2.92 3.94 2.55 2.43 2.765 3.09 0.5 4 00 75 2.225 2.43 2.625 2.855.952 2.208 2.424 2.63 0 00 2.452 2.667 2.857 3.35 2.246 2.658 3.033 4.05 0.25 00 25 2.469 2.685 2.877 3.46 2.28 2.434 2.79 3.88 0.5 00 25 2.449 2.679 2.888 3.55 2.69 2.447 2.824 3.795 00 25 2.47 2.64 2.872 3.47 2.99 2.466 2.849 3.664 2 00 25 2.26 2.49 2.703 2.964 2.09 2.434 2.739 3.27 4 00 25.78.965 2.4 2.344.72.939 2.45 2.3 0.25 00 50 2.468 2.698 2.869 3.38 2.099 2.43 2.756 3.468 0.5 00 50 2.473 2.73 2.882 3.37 2.03 2.456 2.76 3.46 00 50 2.443 2.72 2.882 3.5 2.5 2.476 2.758 3.45 2 00 50 2.385 2.658 2.832 3.02 2.42 2.36 2.736 3.24 4 00 50 2.3 2.342 2.54 2.762.94 2.27 2.495 2.655 0.25 00 75 2.456 2.68 2.86 3.42 2.073 2.42 2.72 3.442 0.5 00 75 2.463 2.69 2.859 3.43 2.07 2.426 2.723 3.438 00 75 2.469 2.699 2.868 3.39 2.07 2.43 2.726 3.425 2 00 75 2.463 2.696 2.854 3.2 2.07 2.428 2.722 3.38 4 00 75 2.345 2.663 2.823 3.08 2.084 2.394 2.688 3.224 2 0 00 2.337 2.585 2.753 3.027 2.2 2.528 3.026 4.05 2 0.25 00 25 2.35 2.597 2.779 3.052 2.037 2.35 2.688 3.828 2 0.5 00 25 2.355 2.64 2.8 3.066 2.054 2.332 2.695 3.829 2 00 25 2.389 2.66 2.788 3.04 2.093 2.348 2.725 3.793 2 2 00 25 2.3 2.57 2.735 2.983 2.073 2.379 2.69 3.577 2 4 00 25 2.047 2.228 2.49 2.647.883 2.72 2.545 2.765 2 0.25 00 50 2.343 2.59 2.77 3.027.969 2.33 2.666 3.468 2 0.5 00 50 2.345 2.596 2.782 3.035.977 2.334 2.664 3.469 2 00 50 2.347 2.599 2.79 3.05.983 2.348 2.677 3.466 2 2 00 50 2.346 2.609 2.789 3.037 2.08 2.362 2.679 3.439 2 4 00 50 2.34 2.57 2.748 3.02 2.049 2.348 2.656 3.306 2 0.25 00 75 2.338 2.587 2.755 3.029.954 2.329 2.647 3.445 2 0.5 00 75 2.339 2.588 2.757 3.029.956 2.33 2.646 3.445 2 00 75 2.343 2.588 2.758 3.027.957 2.336 2.647 3.445 2 2 00 75 2.34 2.592 2.768 3.03.957 2.337 2.646 3.445 2 4 00 75 2.34 2.59 2.774 3.033.959 2.339 2.649 3.44 Partial sums Poisso process 90% 95% 97.5% 99% 90% 95% 97.5% 99% 200 2.606 2.859 3.4 3.366 2.575 2.863 3.7 3.574 200 50 2.608 2.864 3.094 3.37 2.557 2.836 3. 3.606 200 50 2.595 2.882 3.07 3.382 2.53 2.82 3.048 3.408 200 50 2.58 2.763 2.985 3.267 2.427 2.7 2.96 3.8 200 50 2.203 2.47 2.6 2.839 2.23 2.3 2.497 2.74 200 50.539.688.84.996.484.635.782.924 200 00 2.592 2.866 3.066 3.354 2.42 2.662 2.953 3.307 200 00 2.585 2.85 3.043 3.334 2.364 2.632 2.905 3.66 200 00 2.492 2.754 2.936 3.225 2.247 2.50 2.682 2.98 200 00 2.58 2.38 2.543 2.759.928 2.24 2.272 2.527 200 00.506.655.793.927.378.52.63.782 200 50 2.69 2.888 3.093 3.37 2.604 2.898 3.86 3.597 200 50 2.632 2.892 3.093 3.377 2.596 2.889 3.73 3.577 200 50 2.577 2.849 3.5 3.368 2.536 2.82 3.084 3.464 200 50 2.407 2.687 2.92 3.2 2.337 2.598 2.836 3.03 200 50.923 2.42 2.35 2.563.842 2.037 2.9 2.384 200 2.456 2.734 2.978 3.26 2.43 2.704 2.974 3.465 200 50 2.495 2.779 2.982 3.244 2.39 2.777 2.952 3.452 200 50 2.47 2.772 2.943 3.22 2.378 2.75 2.94 3.472 200 50 2.47 2.68 2.922 3.7 2.36 2.677 2.855 3.35 200 50 2.84 2.44 2.68 2.834 2.07 2.307 2.505 2.757 200 50.60.767.892 2.068.54.692.849 2.024 200 00 2.489 2.774 2.99 3.235 2.274 2.586 2.835 3.28 200 00 2.473 2.764 2.949 3.206 2.242 2.576 2.79 3.2 200 00 2.42 2.703 2.927 3.78 2.59 2.479 2.675 2.938 200 00 2.22 2.58 2.688 2.9.958 2.224 2.378 2.68 200 00.727.908 2.07 2.243.527.688.858 2.04 200 50 2.49 2.745 2.99 3.255 2.44 2.752 3.025 3.493 200 50 2.503 2.75 2.953 3.243 2.444 2.742 3.024 3.466 200 50 2.492 2.749 3.004 3.244 2.47 2.706 2.99 3.423 200 50 2.44 2.696 2.944 3.242 2.349 2.603 2.883 3.275 200 50 2.7 2.43 2.675 3.088 2.086 2.353 2.588 2.785 200 2.35 2.68 2.837 3.65 2.253 2.572 2.903 3.33 200 50 2.347 2.624 2.858 3.65 2.236 2.627 2.888 3.379 200 50 2.336 2.622 2.894 3.5 2.237 2.604 2.905 3.362 200 50 2.289 2.609 2.87 3.26 2.27 2.577 2.902 3.289 200 50 2.39 2.447 2.62 2.909 2.06 2.374 2.666 2.828 200 50.705.897 2.06 2.263.655.864 2.0 2.202 200 00 2.347 2.629 2.857 3.69 2.42 2.484 2.705 3.75 200 00 2.35 2.63 2.888 3.58 2.28 2.458 2.69 3.43 200 00 2.327 2.64 2.86 3.4 2.086 2.44 2.687 3.096 200 00 2.244 2.57 2.774 3.08.992 2.282 2.55 2.75 200 00.992 2.247 2.505 2.85.77.966 2.37 2.474 200 50 2.35 2.62 2.843 3.73 2.292 2.609 2.875 3.342 200 50 2.347 2.626 2.853 3.78 2.29 2.604 2.873 3.344 200 50 2.344 2.627 2.873 3.67 2.284 2.596 2.866 3.327 200 50 2.34 2.637 2.859 3.75 2.275 2.554 2.858 3.32 200 50 2.294 2.58 2.833 3.09 2.226 2.54 2.769 3.7 200 2.273 2.56 2.777 3.4 2.42 2.453 2.822 3.234 200 50 2.266 2.523 2.822 3.075 2.24 2.57 2.85 3.237 200 50 2.257 2.549 2.834 3.07 2.3 2.52 2.882 3.223 200 50 2.2 2.577 2.783 3.08 2.53 2.53 2.884 3.22 200 50 2.44 2.49 2.698 3.079 2.27 2.49 2.74 3.88 200 50.903 2.75 2.49 2.742.925 2.68 2.46 2.68 200 00 2.275 2.56 2.778 3.088 2.038 2.396 2.659 3.058 200 00 2.266 2.522 2.8 3.08 2.03 2.39 2.646 3.064 200 00 2.263 2.53 2.838 3.073 2.02 2.368 2.658 3.054 200 00 2.247 2.552 2.797 3.097 2 2.33 2.604 3.022 200 00 2.84 2.532 2.735 3.097.945 2.242 2.492 2.885 200 50 2.275 2.57 2.777 3.06 2.93 2.49 2.762 3.265 200 50 2.275 2.58 2.778 3.097 2.94 2.49 2.766 3.263 200 50 2.276 2.58 2.778 3.086 2.92 2.492 2.763 3.258 200 50 2.275 2.52 2.78 3.079 2.84 2.492 2.763 3.247 200 50 2.272 2.522 2.85 3.072 2.68 2.476 2.766 3.255 able 4.3.: Simulated critical values usig the permutatio method 20

Partial sums Poisso Process γ 90% 95% 97.5% 99% 90% 95% 97.5% 99% 00 0.25 2.589 2.858 3.34 3.435 2.66 2.978 3.249 3.647 00 0.5 2.46 2.742 3.0 3.28 2.496 2.82 3.62 3.543 00 2.307 2.63 2.866 3.68 2.336 2.679 3.048 3.454 00 2 2.225 2.527 2.809 3.4 2.226 2.584 2.885 3.385 200 0.25 2.625 2.898 3.54 3.44 2.659 2.968 3.286 3.67 200 0.5 2.48 2.787 3.009 3.39 2.505 2.824 3.67 3.499 200 2.355 2.625 2.864 3.25 2.355 2.692 3.042 3.502 200 2 2.247 2.527 2.806 3.09 2.282 2.664 3.008 3.439 able 4.3.2: Simulated critical values uder the ull hypothesis were chose as d +γ i +γ γ + i +γ +. ote that the latter expressio does ot deped o, but oly o. Oce agai, we geerated 0, 000 series of icremets S,..., S uder the ull hypothesis for the various choices of parameters. he resultig quatiles ca be foud i able 4.3.2. he asymptotic critical values are the same as i Sectio 4. ad are give i able 4..3. First we realize that the asymptotic quatiles are agai too small this time eve more sigificatly. For compariso, we simulated the critical values obtaied through the permutatio method as before. he results ca be foud i able 4.3.. As i Sectio 4., the critical values are quite good, but declie as the chage becomes more obvious. ote that here the cosistecy of the test is ot guarateed, sice the estimator for b is ubouded uder the alterative which violates coditio 2.4 of Steiebach [3]. ext we simulated the α- resp. β-errors, as we did i Sectio 4., with a chage at = 2. he results ca be foud i able 4.3.3. he α-errors are far too high for the asymptotic method for γ = 0.5, which is due to the fact, that the asymptotic critical values are too small compare ables 4.3.2 ad 4..3. he permutatio method, however, gives good results. For γ = both methods give comparable results. Whe we used d, istead of d, ad = which chages d slightly, the critical values decreased sigificatly. evertheless, this did ot seem to affect the permutatio method at all apparetly the permutatio quatiles were still smaller tha the value of the test statistic for the upermuted observatios. With the asymptotic method, however, we oly obtaied good β-errors for smaller d s, but observed a sudde jump i the β-errors up to 00% as soo as d got larger. his jump e.g. occurred at d = 2 for the 90%-quatile with γ = 0.5, = 00, 200. Agai, we were also iterested i the stadard deviatio of the critical values obtaied by the permutatio method. Uder the ull hypothesis Poisso process, = 00, γ =, we got a stadard deviatio of 0.28 for the 90%-quatile ad of 0.96 for the 99%-quatile, for the partial sums the stadard deviatio was eve smaller. As before, we used, 000 repetitios of step to 4 from the first simulatio. For our simulatios we used agai the software package R, Versio.2.3. O a Celero with 466 MHz ad 384 MB RAM the calculatio of the permutatio quatiles takes approximately 0 secods i the case of 00 observatios, ad 30 secods i the case of 200 usig 0, 000 permutatios. 2

90%-Quatile 95%-Quatile 97.5%-Quatile 99%-Quatile γ d simul. asym. simul. asym. simul. asym. simul. asym. Partial sums 0.5 00 0 4.5 5. 20.9 2.2 9.3 0.9.9 0.5 00 0.25 85.8 55.5 92.3 76.2 96.7 89.4 98.5 97.4 0.5 00 0.5 70.7 38.5 80.5 58.6 86.5 75.7 93.6 9 0.5 00 28.4 9.2 40.7 9.9 52 37 63. 63.5 0.5 00 2 0.3 0 0.4 0.2 0.7 0.5.8 3 0.5 00 3 0 0 0 0 0 0 0. 0 0.5 200 0 8.5 32.5 4.3 5.5.7 5.7 0.7.5 0.5 200 0.25 8. 52.6 88.5 72.5 93 86.9 96.5 94.6 0.5 200 0.5 56.8 29.3 68.7 46.4 79. 67. 87.2 85.2 0.5 200 5.2.2 0.4 3.3 6.6 9.9 25 26. 0.5 200 2 0 0 0 0 0 0 0 0 0.5 200 3 0 0 0 0 0 0 0 0 00 0.9.7 5. 4. 2.6.4.2 0.2 00 0.25 89 88.5 94 95.2 97.5 98.2 98.6 99.8 00 0.5 82.9 83 9 93. 94.9 97 96.9 99.2 00 59.3 60.6 73.4 79.3 82.6 89.8 89.3 97 00 2 2.2 3.6 9.2 28.9 28. 49.9 42. 73. 00 3 0.3 0.6 2.7.6 7.9 3.7 23.2 200 0 0. 0. 4.3 3.5 2.4.5 0.8 0.3 200 0.25 85.6 85.4 92. 94.3 95.4 97.5 98 99.7 200 0.5 78.3 78.3 86.7 90 9.9 95. 95.4 98.3 200 37.5 40 49.8 56.4 6. 73.4 72.6 89.6 200 2 2.3 4 3.7 8.6 6.9 20.7 200 3 0 0 0 0 0 0 0 0 Poisso process 0.5 00 0 0.5 35.6 5.3 9.2 2. 0.2 0.5 2.6 0.5 00 0.25 84.6 58. 9.4 75.5 94.9 86.9 98 94.8 0.5 00 0.5 70.9 4.2 82.6 60.8 90.5 74.6 96.2 9. 0.5 00 27.8 9.8 4. 20.2 54.9 36.3 70.2 60.8 0.5 00 2 0.2 0 0.4 0.3.4 0.8 5. 4.5 0.5 00 3 0 0 0 0 0 0 0 0 0.5 200 0 9.9 34 5 6.5 2 7.2 0.6 2.2 0.5 200 0.25 79.9 55.7 89. 73.3 94.4 85.3 98.4 95 0.5 200 0.5 54. 28.5 66.7 45. 77.3 62.2 87. 79.6 0.5 200 5.9.2. 3.7 8.7 9.9 33.2 23.7 0.5 200 2 0 0 0 0 0 0 0 0 0.5 200 3 0 0 0 0 0 0 0 0 00 0 9. 9.8 4.4 4.2 3. 2.3 0.9. 00 0.25 87.4 85.4 93.2 94. 96.5 97.7 98.6 99. 00 0.5 82.7 82.7 90.2 9.8 95.2 96.3 98. 99.5 00 62.5 62.8 73 76 82.3 88 9.8 95.6 00 2.6 3.7 9. 26.3 29.5 43. 49. 70.2 00 3 0.7 0.9.2 4. 2.7 8.7 9 25. 200 0 9.2 8.8 4.5 4.4 2.2 2..3 200 0.25 86.7 87.6 92.9 93.6 95.8 96.7 98.3 99. 200 0.5 74.9 76.8 85.7 87.4 92.4 94. 96.8 97.8 200 4.4 44.7 56.3 60.5 68.9 74.5 80.9 88.3 200 2.6 2.4 4.3 4.8 8.4 9.9 9.7 200 3 0 0 0 0 0 0 0 0.4 able 4.3.3: Simulated α- resp. β-errors i %, 000 repetitios, = 2 22

Refereces [] Atoch, J. ad Hušková, M. Permutatio tests for chage poit aalysis. Statist. Probab. Lett., 53:37 46, 200. [2] Billigsley, P. Covergece of Probability Measures. Wiley, ew York, 968. [3] Eimahl, U. Persoal commuicatio, 2003. [4] Eimahl, U. ad Maso, D.M. Approximatios to permutatio ad exchageable processes. J. heor. Probab., 5:0 26, 992. [5] Häusler, E. ad Maso, D.M. Weighted approximatio to cotiuous time martigales with applicatios. Scad. J. Statist., 26:28 295, 999. [6] Horváth, L. ad Steiebach, J. estig for chages i the mea or variace of a stochastic process uder weak ivariace. J. Statist. Pla. Ifer., 9:365 376, 2000. [7] Hušková, M. Permutatio priciple ad bootstrap i chage poit aalysis. Fields Ist. Comm., 2004. o appear. [8] Hušková, M. ad Steiebach, J. Limit theorems for a class of tests of gradual chages. J. Statist. Pla. Ifer., 89:57 77, 2000. [9] Kirch, C. Permutatiosprizipie i der Chagepoit-Aalyse. Diploma thesis, Philipps-Uiversität Marburg, 2003. [0] Leadbetter, M.R., Lidgre, L., ad Rootzé, H. Extremes ad Related Properties of Radom Sequeces ad Processes. Spriger, ew York, 983. [] Maso, D.M. Persoal commuicatio, 2003. [2] Slabý, A. Robust Chage-Poit Detectio i the Locatio Model. PhD thesis, Karls-Uiversität, Prag, 2002. [3] Steiebach, J. Some remarks o the testig of smooth chages i the liear drift of a stochastic process. heory Probab. Math. Statist., 6:64 75, 999. 23