Quotes. Review - First Law. Review - First Law. Review - First Law. Review - First Law. Thermodynamics Lecture Series

Similar documents
Thermodynamics Lecture Series

Thermodynamics Lecture Series

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Stress. Temperature and Thermal Equilibrium

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Strss. Temperature and Thermal Equilibrium

Thermodynamics [ENGR 251] [Lyes KADEM 2007]

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

Entropy and the Second Law of Thermodynamics

Thermodynamics Lecture Series

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Introduction to 2 nd Law and Entropy.

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

MAE 110A. Homework 6: Solutions 11/9/2017

Thermodynamics is the Science of Energy and Entropy


Spring_#7. Thermodynamics. Youngsuk Nam.

Lecture 29-30: Closed system entropy balance

Second Law of Thermodynamics -

Exergy and the Dead State

AP Physics Thermodynamics Wrap-up

Lecture Notes Set 4c: Heat engines and the Carnot cycle

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

V. The Second Law of Thermodynamics. V. The Second Law of Thermodynamics

12 The Laws of Thermodynamics

First Law showed the equivalence of work and heat. Suggests engine can run in a cycle and convert heat into useful work.

VI. Entropy. VI. Entropy

Phys102 First Major-131 Zero Version Coordinator: xyz Saturday, October 26, 2013 Page: 1

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes.

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

In the next lecture...

Chapter 7. Entropy: A Measure of Disorder

Lecture 38: Vapor-compression refrigeration systems

Thermodynamic Systems, States, and Processes

Classical Approach to 2 nd Law for CM

Chapter 12 Thermodynamics

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

The Second Law of Thermodynamics

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

CLAUSIUS INEQUALITY. PROOF: In Classroom

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc.

Heat What is heat? Work = 2. PdV 1

Number of extra papers used if any

Phys102 First Major-123 Zero Version Coordinator: xyz Sunday, June 30, 2013 Page: 1

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

1. Second Law of Thermodynamics

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

MAE 11. Homework 8: Solutions 11/30/2018

Chapter 12. The Laws of Thermodynamics

Previous lecture. Today lecture

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University

Q1. The displacement of a string carrying a traveling sinusoidal wave is given by:

Lecture 2 Entropy and Second Law

Applied Thermodynamics. Gas Power Cycles

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

CHAPTER 8 ENTROPY. Blank

Thermodynamics II. Week 9

= for reversible < for irreversible

Free expansion (Joule); Constant U Forced expansion (Joule-Kelvin); Constant H. Joule-Kelvin coefficient - heating or cooling on JK expansion?

Physics 202 Homework 5

Lecture 26. Second law of thermodynamics. Heat engines and refrigerators.

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics

Classification following properties of the system in Intensive and Extensive

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

Lecture 44: Review Thermodynamics I

1. Second Law of Thermodynamics

Basic thermodynamics. heat to the high temperature reservoir.

Examples. Fire Piston (demo) Example (Comparison of processes)

= for reversible < for irreversible

ME Thermodynamics I

CHEM 305 Solutions for assignment #2

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

SECOND LAW OF THERMODYNAMICS

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Lecture 35: Vapor power systems, Rankine cycle

King Fahd University of Petroleum & Minerals

7. Development of the 2nd Law

Spring_#8. Thermodynamics. Youngsuk Nam

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

Chapter 7: The Second Law of Thermodynamics

Review of First and Second Law of Thermodynamics

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

ME Thermodynamics I. Lecture Notes and Example Problems

Lecture 9. Heat engines. Pre-reading: 20.2

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water

Heat Machines (Chapters 18.6, 19)

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

BME-A PREVIOUS YEAR QUESTIONS

Q1. For a given medium, the wavelength of a wave is:

Transcription:

8//005 herodynaics ecture Series Entropy uantifyg Energy Degradation Applied Sciences Education Research Group (ASERG) Faculty of Applied Sciences Universiti eknologi MARA eail: drjjlanita@hotail.co http://www3.uit.edu.y/staff/drjj/ uotes he prcipal goal of education is to create en and woen who are capable of dog new thgs not siply repeatg what other erations have done Jean Piaget What we have to learn to do we learn by dog Este 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 ow to relate changes to the cause Review - First aw Mass Properties will change dicatg change of state Syste E P V o E P V Dynaic Energies as causes (ats) of change W W Mass 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3 Review - First aw Energy Enterg a te - Energy eavg a te Energy Balance Change of te s energy E E E kj or e e e kj/kg or E 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4 E E Review - First aw Mass Enterg a te - Mass eavg a te Mass Balance Change of te s ass kg or 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 5 kg / s Energy Balance Control Volue Steady-Flow Steady-flow is a flow all properties with boundary of the te reas constant with tie E 0 kj; e 0 kj/kg V 0 3 ; 0 or kg 0 kg/s Review - First aw 0 or kg/s 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 6 Copyrights DR JJ ASERG FSG UiM Shah Ala 005

8//005 Mass balance Review - First aw Mass & Energy Balance Steady-Flow: Sgle Strea 0. So kg/s Workg fluid: Water - ω - ω ω net + Second aw igh Res. Furnace Stea Power Plant Purpose: Produce work W ω ω net Energy balance + W W E 0. So E ϑ ϑ + ω ω θ θ kj/kg kj/s 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 7 E ω net - ow Res. Water fro river An Energy-Flow diagra for a SPP 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 8 Second aw heral Efficiency for stea power plants ω η desired put ω η reuired put net net 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 9 Workg fluid: Ref-34a ω - ω ω net - ω net - Second aw igh Res. itchen roo / Outside house Refrigerator/ Air Cond ow eperature Res. Inside fridge or house ω net Purpose: Mata space at low by Reovg An Energy-Flow diagra for a Refrigerator/Air Cond. 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 0 Second aw Coefficient of Perforance for a Refrigerator desired put COP R reuired put ω COP R ω net net 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 Workg fluid: Ref-34a ω net + ω net - Second aw igh eperature Res. Inside house eat Pup Purpose: Mata space at high by supplyg ω net ω net - ow eperature Res. Outside house An Energy-Flow diagra for a eat Pup 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005

8//005 Second aw Coefficient of Perforance for a eat Pup desired put COP P reuired put ω COP P ω net net 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3 Second aw Energy Degrade What is the axiu perforance of real enges if it can never achieve 00%?? Factors of irreversibilities less heat can be converted to work Friction between ovg surfaces Processes happen too fast Non-isotheral heat transfer 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4 Second aw Drea Enge Carnot Cycle Isotheral expansion Slow addg of resultg work done by te (te expand) W U 0. So W. Pressure drops. Adiabatic expansion 0 W U. Fal U saller than itial U. & P drops. Second aw Drea Enge Carnot Cycle Isotheral copression Work done on the te Slow rejection of - + W U 0. So W. Pressure creases. Adiabatic copression 0 + W U. Fal U higher than itial U. & P creases. 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 5 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 6 Second aw Drea Enge Carnot Cycle Second aw Drea Enge Reverse Carnot Cycle P kpa P - ν diagra for a Carnot (ideal) power plant P kpa P - ν diagra for a Carnot (ideal) refrigerator 4 4 3 ν 3 /kg 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 7 i n 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 8 3 ν 3 /kg Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3

8//005 Second aw Drea Enge Carnot Prciples For heat enges contact with the sae hot and cold reservoir All enges have the sae perforance. Real enges will have lower perforance than the ideal enges. rev () () 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 9 Workg fluid: Not a factor P: η η η 3 Second aw igh Res. Furnace Stea Power Plants An Energy-Flow diagra for a Carnot SPPs ω net P: η real < η rev () ηrev () ow Res. Water fro river real 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 0 η Workg fluid: Not a factor COP P Second aw igh Res. itchen roo / Outside house Rev. Fridge/ eat Pup COP ω net COPP rev COPR rev rev ow eperature rev COP Res. Inside COPR rev P rev fridge or house An Energy-Flow diagra for Carnot Fridge/eat Pup 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 R Second aw Will a Process appen Carnot Prciples For heat enges contact with the sae hot and cold reservoir P: η η η 3 (Euality) P: η real < η rev (Ineuality) ηreal η rev Processes satisfyg Carnot Prciples obeys the Second aw of herodynaics 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 Second aw Will a Process appen Clausius Ineuality : Su of / a cyclic process ust be zero for processes and negative for real processes δ kj δ kj kg δ 0 δ < 0 real δ ipossible > 0 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3 δ Second aw Will a Process appen Source rev Stea Power Plant ω net Sk Processes satisfyg Clausius Ineuality obeys the Second aw of herodynaics Carnot SPP 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4 0 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4

8//005 Entropy Entropy uantifyg Disorder ds δ t rev Entropy Change a process S S ds Source source + Stea Power Plant Sk ω net δ S S s k + t rev 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 5 Entropy uantifyg Disorder Entropy uantitative easure of disorder or chaos Is a te s property just like the others Does not depend on process path as values at every state 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 6 Entropy uantifyg Disorder Entropy uantifies lost of energy uality Can be transferred by heat and ass or erated due to irreversibilty factors: Frictional forces between ovg surfaces. Fast expansion & copression. eat transfer at fite teperature difference. 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 7 Entropy uantifyg Disorder Increase of Entropy Prciple he entropy of an isolated (closed and adiabatic) te undergog any process will always crease. isolated For pure substance : surr + surr 0 S ( ) (s s ) surr surr Surroundg Syste 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 8 So: Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path ir Clausius Ineuality δ δ + Entropy Change t rev δ hen: + S S δ S S 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 9 S S δ t rev ds δ Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path hen entropy change for the closed te: ir S S S S 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 30 S S > δ δ δ rev. irrev. Copyrights DR JJ ASERG FSG UiM Shah Ala 005 5

8//005 Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path hen entropy change for the closed te: ir S S 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3 δ S S δ + S S S Sheat + S Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path hen entropy change for the closed te: S S Sheat + S ir For adiabatic process: Sadiab S S S S 0 + S S 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 3 Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path Entropy uantifyg Disorder Increase of Entropy Prciple Proven Consider the followg cyclic process contag an ir forward path and a return path hen entropy change for the closed te: S S Sheat + S ir For adiabatic te: Siso S S 0 + 0 S S hen entropy change for the closed te: S S Sheat + S ir For isolated (adiabatic & closed) te iso 0 + S 0 Isentropic or constant entropy process S + surr 0 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 33 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 34 Entropy uantifyg Disorder S diagra Area of curve under P V diagra represents total work done Area of curve under S diagra represents total heat transfer Recall ds δ t rev ence total heat transfer is δ t rev ds hen δ t rev ds Area under - S diagra is aount of heat a process 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 35 Entropy uantifyg Disorder s diagra C A da ds he fite area da area of strip ds ds Addg all the area of the strips fro state to state will give the total area under process curve. It represents specific heat received for this process 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 36 s kj/kg Copyrights DR JJ ASERG FSG UiM Shah Ala 005 6

8//005 Entropy uantifyg Disorder Factors affectg Entropy (disorder) Entropy will change when there is eat transfer (receivg heat creases entropy) Mass transfer (ovg ass changes entropy) Irreversibilities (entropy will always be erated) Entropy uantifyg Disorder Entropy Balance For any te undergog any process Energy ust be conserved (E E E ) Mass ust be conserved ( ) Entropy will always be erated except for processes Entropy balance is (S S + S ) 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 37 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 38 Entropy uantifyg Disorder Entropy Balance Closed te Energy Balance: Entropy Balance: s + ω ω u + ke + pe 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 39 s + s s kj kg ( sheat + sass ) ( sheat + sass ) + s s ( s heat + 0 ) ( s heat ) s + s s + 0 ( s s ) + kj kg kj kg Entropy uantifyg Disorder + W W ϑ S S + S 0 hen: S S heat + S ass ϑ So S S 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 40 S heat + S ass + s s exit S S let Nozzle: Entropy uantifyg Disorder + W W ( ϑexit ϑlet Assue adiabatic no work done pe ass 0 Entropy Balance In State A << A 0 0 + 0 0 ( h + ke h ke S + s s Out State S 0 0 + ( s s 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4 let exit urbe: Entropy uantifyg Disorder + W W ( ϑexit ϑlet Assue adiabatic ke ass 0 pe ass 0 Entropy Balance 0 0 + 0 W ( h h 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 4 let S + s s S 0 0 + ( s s exit In Out Copyrights DR JJ ASERG FSG UiM Shah Ala 005 7

8//005 Entropy uantifyg Disorder eat exchanger: energy balance; cases let Assue ke ass 0 pe ass 0 Case Case + W W ( ϑexit ϑlet 0 4 h4 3 h3 + h h h h 0 h h exit 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 43 3 4 Entropy uantifyg Disorder eat exchanger: Entropy Balance let exit Case S 0 0 + 4 s4 3 s3 + s s Case S + s s 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 44 3 4 Entropy uantifyg Disorder Mixg Chaber: + W W let exit ϑ ϑ let 8//005 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 45 exit + W W 3 h3 h h S + 3 s3 s s 3 Copyrights DR JJ ASERG FSG UiM Shah Ala 005 8