ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE

Similar documents
Elementary Deformations HK/QK. Oscar MACIA. Introduction [0] Physics [8] Twist [20] Example [42]

Infinitesimal Einstein Deformations. Kähler Manifolds

Solvable Lie groups and the shear construction

Lecture II: Geometric Constructions Relating Different Special Geometries I

Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type

Citation Osaka Journal of Mathematics. 49(3)

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016

Multi-moment maps. CP 3 Journal Club. Thomas Bruun Madsen. 20th November 2009

Simon Salamon. Turin, 24 April 2004

Conification of Kähler and hyper-kähler manifolds and supergr

Two simple ideas from calculus applied to Riemannian geometry

Torus actions and Ricci-flat metrics

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012

Stable bundles on CP 3 and special holonomies

Quaternionic Complexes

Generalized N = 1 orientifold compactifications

Algebraic geometry over quaternions

Reduction of Homogeneous Riemannian structures

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

Twistor constructions of quaternionic manifolds and asymptotically hyperbolic Einstein Weyl spaces. Aleksandra Borówka. University of Bath

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

η = (e 1 (e 2 φ)) # = e 3

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

HYPERKÄHLER MANIFOLDS

Theorem 2. Let n 0 3 be a given integer. is rigid in the sense of Guillemin, so are all the spaces ḠR n,n, with n n 0.

String Theory and Generalized Geometries

Supercurrents. Nathan Seiberg IAS

How to recognize a conformally Kähler metric

H-projective structures and their applications

CHARACTERISTIC CLASSES

Hyperkähler geometry lecture 3

arxiv: v1 [math.dg] 19 Nov 2009

Hard Lefschetz Theorem for Vaisman manifolds

Generalising Calabi Yau Geometries

Geometria Simplettica e metriche Hermitiane speciali

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

How to recognise a conformally Einstein metric?

A Supergravity Dual for 4d SCFT s Universal Sector

A Joint Adventure in Sasakian and Kähler Geometry

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

The exact quantum corrected moduli space for the universal hypermultiplet

DIFFERENTIAL FORMS AND COHOMOLOGY

WHY BLACK HOLES PHYSICS?

Exotic nearly Kähler structures on S 6 and S 3 S 3

Compact Riemannian manifolds with exceptional holonomy

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

Dirac operators with torsion

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx

Minimal surfaces in quaternionic symmetric spaces

String Theory Compactifications with Background Fluxes

Generalized complex geometry and topological sigma-models

From holonomy reductions of Cartan geometries to geometric compactifications

Geometric inequalities for black holes

Self-dual conformal gravity

The exceptional holonomy groups and calibrated geometry

Flat complex connections with torsion of type (1, 1)

General Relativity and Cosmology Mock exam

Heterotic Torsional Backgrounds, from Supergravity to CFT

Topological reduction of supersymmetric gauge theories and S-duality

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

Instantons in string theory via F-theory

Constructing compact 8-manifolds with holonomy Spin(7)

arxiv:math/ v2 [math.dg] 24 Nov 2007 ANNA FINO AND ADRIANO TOMASSINI

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM

Conformal Killing forms on Riemannian manifolds

Contact pairs (bicontact manifolds)

Introduction to supersymmetry

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

Linear connections on Lie groups

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES

Instantons and Donaldson invariants

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

Special quaternionic manifolds from variations of Hodge structures. A. Baarsma, J. Stienstra, T. van der Aalst, S. Vandoren (to appear)

Interacting non-bps black holes

Moment Maps and Toric Special Holonomy

arxiv: v2 [math.dg] 18 Feb 2019

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

LECTURE 10: THE PARALLEL TRANSPORT

arxiv:math/ v3 [math.dg] 5 Mar 2003

Projective parabolic geometries

LECTURE 4: SYMPLECTIC GROUP ACTIONS

Modern Geometric Structures and Fields

A NOTE ON RIGIDITY OF 3-SASAKIAN MANIFOLDS

1. Geometry of the unit tangent bundle

Manifolds with exceptional holonomy

Non-associative Deformations of Geometry in Double Field Theory

CALIBRATED GEOMETRY JOHANNES NORDSTRÖM

Elements of Topological M-Theory

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Transport Continuity Property

Parallel and Killing Spinors on Spin c Manifolds. 1 Introduction. Andrei Moroianu 1

arxiv:hep-th/ v2 14 Oct 1997

Generalized Contact Structures

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians

Dimensional reduction

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Transcription:

ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE Oscar Macia (U. Valencia) (in collaboration with Prof. A.F. Swann) Aarhus, DK March 2, 2017

1 Planning Introduction and motivation. The c-map Interlude: Differential-geometric construction of the c-map (pre-twist version) Twist and hk/qk correspondence

2 Planning 1/3 Introduction and motivation. The c-map

3 Berger s List Theorem Let M be a Riemannian, oriented, simply-connected n- dimensional manifold, which is not locally a product, nor symmetric. Then its holonomy group belongs to the following list: M. Berger (1955) image credit: S.M. Salamon (1989)

4 Kähler manifolds (K) (M 2m, g) + {Hol U(m)} K U(m) = SO(2m) Sp(m, R) GL(m, C) U(m) GL(m, C) I End(T M) : I 2 = Id dλ 1,0 Λ 2,0 Λ 1,1 U(m) SO(2m) g(ix, IY ) = g(x, Y ) U(m) Sp(m, R) ω(x, Y ) = g(ix, Y ) Λ 2 T M dω = 0

5 Quaternion-Kähler manifolds (QK) (M 4k, g) + {Hol Sp(k)Sp(1)} QK I, J, K ΓEndT M : I 2 = J 2 = K 2 = IJK = Id g(ax, AY ) = g(x, Y ) A = I, J, K ω A (X, Y ) = g(ax, Y ) Λ 2 T M Ω = A ω 2 A Λ4 T M Ω = 0. Sp(k)Sp(1) U(m) QK K { Hol Sp(k) Sp(k)Sp(1) HK Hol Sp(k)Sp(1) M symmetric space

6 Hyper-Kähler manifolds (HK) (M 4k, g) + {Hol Sp(k)} HK Sp(k) U(m) HK K I, J, K ΓEndT M : I 2 = J 2 = K 2 = IJK = Id Curvature ω A Λ 2 T M dω I = dω J = dω K = 0. QK Einstein QK + {s = 0} HK

7 (First) Motivation Wolf spaces G 2 HP n, Gr 2 (C n+2 ), Gr 4 (R n+4 ) SO(4), F 4 Sp(3)Sp(1), E 6 SU(6)Sp(1), E 7 Spin(12)Sp(1), E 8 E 7 Sp(1) Alekseevsky spaces Homogeneous, non-symmetric QK, with s < 0.

8 (First) Motivation Wolf spaces G 2 HP n, Gr 2 (C n+2 ), Gr 4 (R n+4 ) SO(4), F 4 Sp(3)Sp(1), E 6 SU(6)Sp(1), E 7 Spin(12)Sp(1), E 8 E 7 Sp(1) Alekseevsky spaces Homogeneous, non-symmetric QK, with s < 0. 1. Find explicit examples of QK manifolds The mathematical problems that have been solved or techniques that have arisen out of physics in the past have been the lifeblood of mathematics. Sir Michael F. Atiyah Collected Works Vol. 1 (1988), 19, p.13

9 M-Theory

10 T-Duality & c-map T-Duality c-map IIA IIB K 1 QK 2 CH(1) K 2 QK 1 CH(1) K 2m c-map QK 4(m+1) Rigid c-map Cecotti, Ferrara & Girardello (1989), Ferrara & Sabharwal (1990) K 2m rigid c-map HK 4m

11 c-map & homogeneous QK classification 1975 1. Completely solvable Lie groups admitting QK metrics. 2. All known homogeneous non-symmetric QK manifolds. Alekseevsky (1975) 1989, 1990 K 2m c QK 4(m+1) Cecotti, Ferrara & Girardello (1989), Ferrara & Sabharwal (1990) 1992 Use c-map to complete Alekseevsky s classification. de Witt & Van Proeyen (1992) 1996 Complete classification (without c-map). Cortes (1996)

12 Field content of N = 2, D = 4 SIMPLE SUGRA a = 0,..., 3, ˆµ = 0,... 3, Λ = 1, 2 Gravity supermultiplet m Vector supermultiplets (V aˆµ, ψλ, A 0ˆµ ) φ i a (A iˆµ, λi Λ, φ i ), i = 1,..., m m C-scalars = 2m R-scalars Coordinates on a 2m-dimensional, PSK Σ-model

13 4D 3D Kaluza Klein compactification, I Metric ˆµ = 0,... 3 (0, µ), µ = 1, 2, 3 η ab V aˆµ V bˆν = gˆµˆν KK = 4-vectors ( e 2σ e 2σ A ν e 2σ A µ e iσ g µν + e 2σ A µ A ν ) A 0ˆµ KK = (A 0 0, A 0 µ) (ζ 0, A 0 µ) A iˆµ KK = (A i 0, A i µ) (ζ i, A i µ) σ, ζ 0, ζ i m + 2 extra scalar fields A µ, A 0 µ, A i µ m + 2 extra 3D-vector vields.

14 4D 3D Kaluza Klein compactification, II Dualization of 3D-vector fields (A µ, A 0 µ, A i µ) Duality (a, ζ 0, ζ i ) a, ζ 0, ζ i m + 2 extra scalar fields.

15 SUGRA N = 2, D = 4 Kaluza-Klein 4D 3D Gravity supermultiplet 4D #s 3D #s * #s V iˆµ Vµ, i A µ, e 2σ 1 Vµ, i a, φ 2 ψ Λ ψ Λ ψ Λ A 0ˆµ A 0 0, A0 µ 1 ζ 0, ζ 0 2 m Vector supermultiplet 4D #s 3D #s * #s A iˆµ A i 0, Ai µ m ζ i, ζ i 2m λ i Λ λ i Λ λ i Λ φ i 2m, R φ i 2m φ i 2m

16 Planning 2/3 Introduction and motivation: The c-map. Interlude: Differential-Geometric construction of the c-map (pre-twist version)

17 (Second) Motivation 2. To provide a geometric construction to the c-map. Actually... K 2m c-map QK 4(m+1) PSK 2m c-map QK 4(m+1)

18 Special Kähler manifolds, I Special Kähler manifolds, SK 1. s ω = 0, 2. R( s ) = T( s ) = 0, 3. s X IY = s Y SK = (K, s ) IX ( special condition ) Conic special Kähler manifolds, CSK 1. g(x, X) 0; CSK = (SK, X) 2. ω X = I = g X. X XM

19 Special Kähler manifolds, II * Moment mapping µ : M R : p X p 2 Projective special Kähler manifolds, PSK PSK = CSK// c X = µ 1 (c)/x c R CSK 0 = µ 1 (c) CSK CSK// c X = PSK

20 General picture arising from physics CSK 2(m+1) rigid c-map HK 4(m+1) // c X PSK 2m c-map QK 4(m+1) HK 4(m+1) = T CSK 2(2(m+1)) rigid c-map CSK 2(m+1) R 2(m+1)

CSK 2(m+1) R 2(m+1) HK 4(m+1) // c X? PSK 2m c-map QK 4(m+1)

21 Planning 3/3 Introduction and Motivation. The c-map. Interlude: Differential-Geometric construction of the c-map. (pre-twist version) Twist and HK/QK correspondence

22 The Twist construction (sketch) The twsit construction associates to a manifold M with a S 1 -action, a new space W of the same dimension, with a distinguished vector field. This construction fits into a double fibration S 1 π P π W S 1 M n twist so W is M twisted by the S 1 -bundle P. W n A. Swann, (2007, 2010)

23 Twists & HK/QK correspondence 1992, 2001 Instanton twists (Hypercomplex, Quaternionic, HKT) D.Joyce (1992), G.Grantcharov & Y.S. Poon (2001) 2007, 2010 General twists (T-duality, HKT, KT, SKT,...) A.F. Swann (2007, 2010) 2008 HK/QK correspondence {HK + symmetry fixing one ω} {QK + circle action} 2013 A. Haydys (2008) Twistor interpretation N.J. Hitchin (2013)

24 Idea CSK 2(m+1) R 2(m+1) HK 4(m+1) πm // c X P PSK 2m c-map QK 4(m+1) π W

25 The Twist construction (in detail) Y XP : S 1 π P π W X XM : S 1 M n W n = P/ X twist 1. P (M, S 1 ) : connection θ, curvature π M F = dθ. 2. L X F = 0 A. Swann, (2007, 2010) 3. X = X θ + ay XP : such that L X θ = L X Y = 0. 4. W = P/ X with induced action by Y.

26 Twist data (M, X, F, a) = π M P π W M W Twist data 1) M, a C manifold. 2) X XM, generating the S 1 -action. 3) F Ω 2 M, X-invariant, with integral periods. 4) a C M such that da = X F

27 H-related tensors M H P π M π W T p P = H p + V p H p = Tπ(p) M = T πw (p) W W α TM, α W TW α H α W (π M α) H = (π W α W ) H Lemma α Ω p M X!α W Ω p W : α W H α π W α W = π α θ π (a 1 X α)

28 Computing the Twist dα W α Ω p M X, dα W H dα 1 F (X α). a Twisted exterior differential, d W α W H α, dα W H d W α d W := d 1 a F X

29 Twist vs Integrability Complex case Let I an invariant complex structure on M, H-related to an almost-complex structure I W on W, I W is integrable iff F Ω 1,1 I M. Kähler case K C π M S 2n+1 T 2 π W CP n T 2 S 2n+1 S 1

30 Need for a deformation Problem dα = 0 dα W = 0 dα W d W α = dα 1 a F (X α) = 1 F (X α) 0 a 31 Simetríes of the structure HK = (M, g, I, J, K) Rotating symmetry X XM 1. L X (g) = 0. 2. L X (I) = I, J, K 3. (a) L X I = 0, (b) L X J = K, (c) L X K = J

32 Elementary deformations of the HK metric g α HX = X, IX, JX, KX α 0 = g(x, ), α A = g(ax, ) (A = I, J, K) g α := α 2 0 + A α 2 A g HX g N, Elementary deformation of the metric g N = fg + hg α, f, g C M

33 Uniqueness Theorem (M 4k, g, I, J, K) HK, k 2 X XM Rotating symmetry µ Moment mapping! Elementary deformation! Twist data g N = 1 µ c g + 1 (µ c) 2g α W F = kg = k(dα 0 + ω I ), a = k(g(x, X) µ + c). QK O.Macia, A.F.Swann (2015)

34 Idea of proof 1. From g N and (I, J, K), construct ω N A y ΩN. 2. Impose arbitrary twist of Ω N to be QK. 3. Decompose equation with respect to the splitting T M = HX HX. 4. All this leads to f = f(µ), h = h(µ) y h = f. 5. Impose da = X F to determine a. 6. Imposing df = 0 leads to ODE s which determine f.

MANGE TAK

35 Planning 4/3 (!) Introduction and Motivation. The c-map. Interlude: Differential-Geometric construction of the c-map. (pre-twist version) Twist and HK/QK correspondence Bonus Track: A worked-out example

36 The hyperbolic plane RH(2) - CH(1) : Real, 2-dimensional solvable Lie group with Kähler metric of constant curvature. - Local basis of one-forms on S CH(1) : {a, b} Ω 1 S : da = 0, db = λa b - Metric: g S = a 2 + b 2 - Almost complex structure: Ia = b - Kähler two-form: ω S = a b.

37 Local cone structure - The PSK S is the Kaehler quotient of a CSK manifold C (C, g, ω,, X) C 0 S π i C S = C// c X - Locally C = R >0 C 0. - C 0 is the level set µ 1 (c) for the moment map of X. - C 0 S is a bundle with connection 1-form ϕ : dϕ = 2π ω S

38 Metric and Kaehler form on C - Write t for the standard coordinate on R >0 and ˆψ = dt. - Write â = tπ a, ˆb = tπ b, ˆϕ = tϕ Lemma The (2, 2) pseudo Riemannian metric and the Kaehler form of C = R >0 C 0 are g C = â 2 + ˆb 2 ˆϕ 2 ˆψ 2 = dt 2 + t 2 g C0 ω C = â ˆb ˆϕ ˆψ. The conic isometry satisfies IX = t t

39 LC connection - Coframe s θ = (â, ˆb, ˆϕ, ˆψ) Exterior differential d(s θ) dâ = 1 t dt â d ˆϕ = 1 t (dt ˆϕ + 2â ˆb) d ˆψ = 0 dˆb = 1 t (dt ˆb λâ ˆb) LC connection s ω LC 0 ˆϕ + λˆb ˆb â s ω LC = 1 ˆϕ λˆb 0 â ˆb t ˆb â 0 ˆϕ â ˆb ˆϕ 0

40 Curvature 2-form Curvature 2-form s Ω LC s Ω LC = 4 λ2 t 2 0 â ˆb 0 0 â ˆb 0 0 0 0 0 0 0 0 0 0 0 Lemma The pseudo Riemannian metric g C is flat iff λ 2 = 4.

41 Conic special Kaehler condition Symplectic connection in terms of LC connection Conditions on η. 1. η s θ. 2. i η = η i. 3. t η s = s η. 4. X η = IX η = 0. Proposition s ω = s ω LC + η. The cone (C, g C, ω C ) over S RH(2) is CSK iff λ 2 = 4 3 or λ 2 = 4.

42 HK structure on T CSK HK metric ( g HK = â 2 + ˆb 2 ˆϕ 2 ˆψ 2) + HK structure (Â2 + ˆB 2 ˆΦ 2 ˆΨ 2) ω I = â ˆb ˆϕ ˆψ Â ˆB + Φ ˆΨ ω J = Â â + ˆB ˆb + ˆΦ ˆϕ + ˆΨ ˆψ ω K = Â ˆb ˆB â + ˆΦ ˆψ ˆΨ ˆϕ.

43 Elementary deformation of g α HK 0,... α K α I = I X g H = t ˆψ, α 0 = Iα I = t ˆϕ µ α J = I X g H = tˆφ, α K = Iα J = t ˆΨ µ = 1 2 X 2 = t2 2 Elementary deformation g N = 1 µ g H + 1 µ 2(α2 0 + α2 I + α2 J + α2 K ) = 2 t 2(â2 + ˆb 2 + ˆϕ 2 + ˆψ 2 + Â2 + ˆB 2 + ˆΦ 2 + ˆΨ 2 )

44 Twist data Twisting two-form F = â ˆb + ˆϕ ˆψ Â ˆB + ˆΦ ˆΨ Twisting function a = µ = t2 2

45 Flat case λ 2 = 4. - The LC and the special connection coincide. - X-invariant coframe on CSK γ = s θ/t = (ã, b, ϕ, ψ) (we can compute the twisted differentials immediatelly) d W ã = 0 d W b = 2 b ã d W ϕ = 2ã b + 2 t 2F d W ψ = 0 - The (vertical) coframe δ = (s α)/t = is NOT X-invariant. (Ã, B, Φ, Ψ)

δ = δe iτ ɛ = 1 2 (δ 1 + δ 4, δ 2 δ 3, δ 2 δ 3, δ 1 + δ 4 ) ψ ã 0 2 b 0 0 ψ ã 0 2 b d W ɛ = ɛ 0 0 ψ ã 0 0 0 0 ψ + ã d W ϕ = 2(ϕ ψ + ɛ 13 + ɛ 4 ɛ 2 ) The resulting Lie algebra is isomorphic to the non-compact symmetric space Gr 2 + U(2, 2) (C2,2 ) = U(2) U(2)

46 Non-flat case λ 2 = 4 3 - Same g HK, g N and same twist data F, a. - Twisted differentials for γ = (ã, b, ϕ, ψ) : 2 d W ã = 0 d W b = 3ã b d W ψ = 0 d W ϕ = 2(ϕ ψ Ã B + Φ Ψ)

- Adjusting the vertical coframe we arrive to d W ɛ = ɛ ψid 4 + 1 3 ɛ ã + 2 3 ɛ b 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3 We see the structure of solvable algebra associated to G 2 SO(4)

MANGE TAK