English Version P (1 X < 1.5) P (X 1) = c[x3 /3 + x 2 ] 1.5. = c c[x 3 /3 + x 2 ] 2 1

Similar documents
Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version)

TAMS24: Notations and Formulas

STATISTICAL INFERENCE

Topic 9: Sampling Distributions of Estimators

Expectation and Variance of a random variable

Topic 9: Sampling Distributions of Estimators

Stat 319 Theory of Statistics (2) Exercises

Topic 9: Sampling Distributions of Estimators

STAT431 Review. X = n. n )

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Last Lecture. Wald Test

Kurskod: TAMS24 (Statistisk teori)/provkod: TEN :00-12:00. English Version. 1 (3 points) 2 (3 points)

Questions and Answers on Maximum Likelihood

Rule of probability. Let A and B be two events (sets of elementary events). 11. If P (AB) = P (A)P (B), then A and B are independent.

Summary. Recap ... Last Lecture. Summary. Theorem

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

This section is optional.

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Common Large/Small Sample Tests 1/55

1.010 Uncertainty in Engineering Fall 2008

STA 4032 Final Exam Formula Sheet

Stat 200 -Testing Summary Page 1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

Random Variables, Sampling and Estimation

Statistical Theory MT 2009 Problems 1: Solution sketches

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Parameter, Statistic and Random Samples

of the matrix is =-85, so it is not positive definite. Thus, the first

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

Chapter 6 Principles of Data Reduction

EE 4TM4: Digital Communications II Probability Theory

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Probability and statistics: basic terms

Lecture 7: Properties of Random Samples

32 estimating the cumulative distribution function

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

5. Likelihood Ratio Tests

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture Notes 15 Hypothesis Testing (Chapter 10)

NOTES ON DISTRIBUTIONS

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

AMS570 Lecture Notes #2

Stat410 Probability and Statistics II (F16)

4. Partial Sums and the Central Limit Theorem

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

z is the upper tail critical value from the normal distribution

MATH/STAT 352: Lecture 15

Statistical Theory MT 2008 Problems 1: Solution sketches

Simulation. Two Rule For Inverting A Distribution Function

SDS 321: Introduction to Probability and Statistics

HOMEWORK I: PREREQUISITES FROM MATH 727

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Estimation for Complete Data

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2

Properties and Hypothesis Testing

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is:

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

Problem Set 4 Due Oct, 12

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

STAT Homework 7 - Solutions

Introductory statistics

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

Statisticians use the word population to refer the total number of (potential) observations under consideration

HYPOTHESIS TESTS FOR ONE POPULATION MEAN WORKSHEET MTH 1210, FALL 2018

Final Examination Statistics 200C. T. Ferguson June 10, 2010

Statistics 20: Final Exam Solutions Summer Session 2007

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 3

Unbiased Estimation. February 7-12, 2008

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9

Last Lecture. Unbiased Test

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Lecture 11 and 12: Basic estimation theory

Lecture 19: Convergence

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

CH.25 Discrete Random Variables

November 2002 Course 4 solutions

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

2. The volume of the solid of revolution generated by revolving the area bounded by the

x = Pr ( X (n) βx ) =

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

Mathematical Statistics - MS

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

Stat 421-SP2012 Interval Estimation Section

Element sampling: Part 2

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

Transcription:

Kurskod: TAMS28 Matematisk statistik/provkod: TEN 208-08-20 08:00-2:00 Examiator: Zhexia Liu Tel: 0700895208 You are permitted to brig: a calculator, ad formel -och tabellsamlig i matematisk statistik Scores ratig: 8- poits givig rate 3; 5-45 poits givig rate 4; 5-8 poits givig rate 5 3 poits Eglish Versio A populatio X is discrete ad has a probability mass fuctio as follows X 2 3 px 04 02 04 A radom sample {X,, X 00 is take from this populatio Fid the probability P X + + X 00 20 Solutio µ = 04 + 2 02 + 3 04 = 2, σ 2 = 2 04 + 2 2 02 + 3 2 04 µ 2 = 08 σ = 08944 P X + + X 00 20 = P X 20/00 = P X µ σ/ 2 µ σ/ = P N0, 2 = Φ2 = 08686 = 034 2 3 poits Assume that X has a probability desity fuctio fx = cx 2 + 2x, for 0 x 2 2 p Fid the costat c 22 2p Fid the coditioal probability P X < 5 X Solutio 2 = 2 0 cx2 + 2xdx = c[x 3 /3 + x 2 ] 2 0 = 20c/3 c = 3/20 = 05 22 P X < 5 X = P X < 5 P X = c[x3 /3 + x 2 ] 5 c[x 3 /3 + x 2 ] 2 = 5 cx 2 + 2xdx 2 cx2 + 2xdx = c 2042 c 5334 = 038 3 3 poits A populatio X has a probability desity fuctio fx = θ + x θ for x 0 It is kow that the parameter θ is either 2, 3 or 4 A sample {02, 08 is take from this populatio Based o this sample, fid a poit estimate of θ usig Maximum-Likelihood method Solutio The likelihood fuctio is Lθ = fx fx 2 = θ + x θ θ + x 2 θ = θ 2 26 θ Sice θ ca oly take 2, 3 or 4, we just put these three values i Lθ ad fid which is the maximum L2 = 03969, L3 = 0435, L4 = 03403 ˆθ = 3 /3

4 3 poits Oe has measured the levels of a certai cotamiatio i soil samples take partly i the viciity of a idustry, ad partly i a purely area with the correspodig soil The results are: i x i s i Near idustry 8 80 049 Clea area 9 0 046 Oe ca assume that the values for ear idustry are observatios from X Nµ, σ, ad the values i clea area are observatios from X 2 Nµ 2, σ which is idepedet of X 4 5p Costruct a oe-sided 95% cofidece iterval of µ µ 2 i the form a, + 42 5p Costruct a oe-sided 99% cofidece iterval of σ 2 i the form 0, b Solutio 4 I µ µ 2 = x x 2 t α + 2 2 s +, + 2 = 80 0 75 04742 8 + 9, + = 07 0403, + = 0297, +, where s 2 = s2 + s2 2 + 2 2 = 02249 s = 04742 42 I σ 2 = 0, + 2 2s 2 χ 2 α + 2 2 8 + 9 202249 = 0, χ 2 099 8 + 9 2 = 0, 33735 = 0, 0645 523 5 3 poits Assume that Let Y = Y = X + Y 2 Solutio It is easy to see that X 0 X = N, X 2 5 2 Fid the probability P Y 35 + Y 2 32 Y = Y N Y 2 2, 85 4 2 2 9 4 2 2 9 Now let Z = Y + Y 2 = AY where the matrix A = The the mea of Z is µ Z = Aµ Y = 2 = 297, 85 ad the variace of Z is So Z N297, 7 Thus σz 2 = AC Y A = 4 2 = 7 2 9 P Y + Y 2 32 = P N0, 32 297/ 7 = Φ056 = 0723 2/3

6 3 poits A dice has bee throw 20 times with the followig result: Outcome 2 3 4 5 6 Frequecy 0 32 2 8 23 25 Does the result idicate that the dice is ubalaced? Perform a χ 2 test with a 5% sigificace level Solutio It is the clear that the test statistic is ad the rejectio regio is H 0 : p = p 2 = p 3 = p 4 = p 5 = p 6 = /6 agaist H : some p i /6 T S = 6 y i p i 2 = 73, p i i= C = χ 2 α6, + = 070, + Sice T S C, we reject H 0, amely, the dice is ideed ubalaced 3/3

Svesk versio 3 poäg E populatio X är diskret och har e saolikhetsfuktio eligt följade X 2 3 px 04 02 04 Ett stickprov {X,, X 00 tas frå dea populatio Beräka saolikhete P X + + X 00 20 2 3 poäg Atag att X har e täthetsfuktio fx = cx 2 + 2x, för 0 x 2 2 p Beräka kostate c 22 2p Beräka de betigade saolikhete P X < 5 X 3 3 poäg E populatio X har e täthetsfuktio fx = θ + x θ för x 0 Det är kät att parameter θ är atige 2, 3 eller 4 Ett stickprov {02, 08 tas frå dea populatio Baserat på detta stickprov, beräka e puktskattig av θ geom att aväda Maximum Likelihood-metode 4 3 poäg Ma har mätt haltera av e viss föroreig i jordprover taga dels i ärhete av e idustri dels i ett retömråde med motsvarade jordmå Resultate är: i x i s i Nära idustri 8 80 049 Rea området 9 0 046 Ma ka ata att värdea ära idustri är observatioer frå X Nµ, σ, och värdea i rea området är observatioer frå X 2 Nµ 2, σ som är oberoede av X 4 5p Kostruera ett esidigt 95% kofidesitervall av µ µ 2 i forme a, + 42 5p Kostruera ett esidigt 99% kofidesitervall av σ 2 i forme 0, b 5 3 poäg Atag att Låt Y = Y = X + Y 2 6 3 poäg X 0 X = N, X 2 5 2 Beräka saolikhete P Y 35 + Y 2 32 E tärig har kastats 20 gåger med edaståede resultat: 4 2 2 9 Utfall 2 3 4 5 6 Frekves 0 32 2 8 23 25 Tyder resultatet på att tärig är obalaserad? Utför ett χ 2 test vid 5% sigifikasivå /

TAMS28: Notatios ad Formulas by Xiagfeg Yag Basic probability ad radom variables rv Coditioal probability P A B = P A B P B 2 Discrete rv X has a pmf fx = P X = x satisfyig fx 0 ad fxi =, X x x2 x fx fx fx2 fx Mea or Expected value or Expectatio µ = EX = xifxi; Variace σ 2 = V X = EX 2 µ 2 = x 2 i fxi µ2 3 Cotiuous rv X has a pdf fx satisfyig fx 0 ad fxdx =, b P a < X < b = fxdx a Mea or Expected value or Expectatio µ = EX = xfxdx; Variace σ 2 = V X = EX 2 µ 2 = x2 fxdx µ 2 4 Cumulative distributio fuctio cdf of a rv X is F x = P X x 5 If X ad Y are rv, a, b ad c are scalars, the EaX + by + c = aex + bey + c If X ad Y are idepedet rv, a, b ad c are scalars, the V ax + by + c = a 2 V X + b 2 V Y 2 Special rv X N0, : stadard Normal, EX = 0 ad V X = X Nµ, σ : geeral Normal, EX = µ ad V X = σ 2, X µ σ N0, X Bi, p : Biomial has a pmf fk = P X = k = p k k p k, k = 0,, 2,, EX = p, V X = p p Normal approximatio to Biomial Bi, p N p, p p, if p p 0 X P oµ : Poisso has a pmf fk = P X = k = e µ µ k k!, k = 0,, 2, EX = µ, V X = µ Normal approximatio to Poisso P oµ Nµ, µ, if µ 5 Poisso approximatio to Biomial Bi, p P o p, if 0 ad p 0 X Expλ : Expoetial has a pdf fx = { λe λx, x 0, 0, otherwise EX = 2 λ, V X = λ X Ua, b or X Rea, b: Uiform has a pdf { fx = b a, a < x < b, 0, otherwise EX = a + b b a2, V X = 2 2 3 Cetral Limit Theorem CLT Suppose that a populatio has mea= µ ad variace= σ 2 A radom sample {X, X2,, X from this populatio is give The for large 30, X µ σ/ N0, If the populatio is Normal Nµ, σ, the holds for ay Uderstad that µ = E X ad σ/ 2 = V X /4 4 Several otatios i statistics 4 Sample mea X = X+X2+X = Xi x+x2+x, ad x = = xi 42 Sample variace S 2 = Xi 2 X, ad s 2 = xi x 2 43 A poit estimate of a ukow parameter θ obtaied by Methods of Momets is deoted as ˆθMM 44 A poit estimate of a ukow parameter θ obtaied by Maximum Likelihood method is deoted as ˆθML Capital letters such as X ad S 2 refer to the objects before measure/observe, ad they are i geeral rv Small letters such as x ad s 2 refer to the objects after measure/observe, ad they are i geeral scalars 5 Cofidece Itervals CI CI-: α cofidece iterval for a populatio mea µ ay If populatio X Nµ, σ ad σ is kow, the X µ σ/ N0, ad Iµ = x z α/2 σ, x + z α/2 σ X µ 2 30 For arbitrary populatio X σ is kow or ukow, it holds that σ/ N0, ad σ σ ˆσ ˆσ Iµ = x z α/2, x + z α/2 or Iµ = x z α/2, x + z α/2 3 ay If populatio X Nµ, σ ad σ is ukow, the X µ S/ T ad Iµ = x t α/2 s, x + t α/2 s CI- : α cofidece iterval for two idepedet populatio meas µx µy ay, If populatios X NµX, σx ad Y NµY, σy are idepedet, σx ad σy are kow, IµX = σ X x 2 ȳ z µy α/2 X Ȳ µx µy N0,, ad σ 2 X, x ȳ + z α/2 σ 2 X 2, 30 For arbitrary idepedet populatios X ad Y σx, σy are kow or ukow, it holds that X Ȳ µx µy N0,, ad σ 2 X IµX = x ȳ z µy α/2 σ 2 X or IµX = ˆσ X x 2 ȳ z µy α/2, x ȳ + z α/2 + ˆσ2 Y, x ȳ + z α/2 σ 2 X ˆσ X 2 + ˆσ2 Y 3 ay, If populatios X NµX, σx ad Y NµY, σy are idepedet, σx = σy are ukow, X Ȳ µx µy S + T + 2, where S 2 = S2 X + S2 Y, + 2 IµX µy = x ȳ t α/2 + 2 s +, x ȳ + t α/2 + 2 s + Remark: if S 2 is obtaied from k samples, the the degrees of freedom is + + k k 2/4

CI-2: α cofidece iterval for a populatio variace σ 2 or σ A populatio X Nµ, σ ad a sample {x,, x, the S2 σ 2 χ2 ad s 2 s 2 s 2 s 2 I σ 2 = χ 2 α/2, or Iσ = χ 2 α/2 χ 2 α/2, χ 2 α/2 CI-2 : α cofidece iterval for 2 same populatio variace σ 2 or σ -st populatio X Nµ, σ ad a sample {x,, x, 2-d populatio Y Nµ2, σ ad a sample {y,, y, k-th populatio Z Nµk, σ ad a sample {z,, zk, the ˆσ 2 = s 2 = s2 ++k s2 k ++k k ad ++k ks2 σ 2 χ2 + + k k, so + + k ks 2 I σ 2 = χ 2 α/2 + + k k, + + k ks 2 χ 2 α/2 + + k k CI-3: α cofidece iterval with ormal approximatios 3 A ormal to a Biomial X Bi, p N p, p p, if p p 0 Therefore, X p ˆP p = N0,, where ˆP = X/ p p p p/ Thus Ip = ˆp z α/2 ˆp ˆp/, ˆp + z α/2 ˆp ˆp/ 3 Two ormals to two Biomials X Bi, p N p, p p, if p p 0 Y Bi, p2 N p2, assume that X ad Y are idepedet p2 p2, if p2 p2 0 The, ˆP ˆP2 p p2 p p + p2 p2 N0,, where ˆP = X/ ad ˆP2 = Y/ Thus Ip p2 = ˆp ˆp2 z α/2 ˆp ˆp + ˆp2 ˆp2, ˆp ˆp2 + z α/2 ˆp ˆp + ˆp2 ˆp2 3/4 32 A ormal to a Poisso If X P oµ with a radom sample {X,, X, the X + + X P oµ Nµ, µ, if µ 5 X + + X µ µ = X µ µ/ N0,, ad Iµ = x z α/2 x/, x + z α/2 x/ 6 Hypothesis Testig HT There are three differet pairs: H0 : θ = θ0 or H : θ < θ0 H0 : θ = θ0 or H : θ > θ0 H0 : θ = θ0 H : θ θ0 H0 is true H0 is false ad θ = θ reject H0 type I error or sigificace level α power hθ do t reject H0 α type II error βθ = hθ TS = test statistic reject H0 if TS C C = rejectio regio HT-: HT for a populatio mea µ ay If populatio X Nµ, σ ad σ is kow, the X µ σ/ N0, ad H : µ < µ0 H : µ > µ0 H : µ µ0 σ/, C =, zα; σ/, C = zα, + ; σ/, C =, z α/2 z α/2, + X µ 2 30 For arbitrary populatio X σ is kow or ukow, it holds that σ/ N0, ad σ/ H : µ < x µ0 or ˆσ/, C =, zα; µ0 σ/ H : µ > x µ0 or ˆσ/, C = zα, + ; µ0 σ/ H : µ x µ0 or ˆσ/, C =, z α/2 z α/2, + µ0 3 ay If populatio X Nµ, σ ad σ is ukow, the X µ S/ T ad H : µ < µ0 H : µ > µ0 H : µ µ0 s/, C =, tα ; s/, C = tα, + ; s/, C =, t α/2 t α/2, + Similarly: HT- from CI-, HT-2 from CI-2, HT-2 from CI-2 ad HT-3 from CI-3 4/4