FIRST carrier spacecraft

Similar documents
Herschel Mission Overview and Key Programmes

The Herschel Mission

The Herschel Space Observatory: Mission Overview and Observing Opportunities

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

The Promise of Herschel

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009

Herschel Photodetector Array Camera & Spectrometer

SPIRE In-flight Performance, Status and Plans Matt Griffin on behalf of the SPIRE Consortium Herschel First Results Workshop Madrid, Dec.

Spectroscopy with the Herschel Space Observatory

The Development of the Herschel Mission

4.2 Herschel. Introduction. Scientific objectives

Announcement of Opportunity for Open Time. SPIRE PACS Parallel Mode Observers' Manual

Spitzer Space Telescope

Extragalactic astrophysics experiments & instruments with the 25 meter Atacama telescope

SPITZER SPACE TELESCOPE

ASTRO-F SURVEY AS INPUT CATALOGUES FOR FIRST. Takao Nakagawa

SPIRE: Herschel s Submillimetre Camera and Spectrometer

Benefits of Infrared. The Spitzer Space Telescope. Instruments/Components of Spitzer. Cryostat. Infrared Telescope

SPIRE/PACS Parallel Mode

The next-generation Infrared astronomy mission SPICA Space Infrared Telescope for Cosmology & Astrophysics

Sun Shield. Solar Paddle

Continuum Observing. Continuum Emission and Single Dishes

HAWC (High Resolution Airborne Wideband Camera) A Facility Camera for SOFIA

Instrument Concept. Herschel OT KP Workshop ESTEC, Feb Focal Plane Footprint. PACS Instrument & GT Programme x 32 pixels 3.2 x 3.

Aminoethanol. Chapter Introduction. Aminoalcohols are central to the gas phase formation of glycine in current hot

FIR/submm astronomy: science, observatories, and perspectives for lunar observatory

Large Area Imaging Survey of Near-Infrared Sky with Korean Compact Space Telescopes

Welcome and Introduction

SOFIA Stratospheric Observatory For Infrared Astronomy

Welcome and Introduction

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

2 Figure2.Simulations are underway to determine optimum instrument congurations and observation strategies for e.g. unbiased deep extragalactic survey

A software simulator for the Herschel-SPIRE imaging photometer

ABSTRACT. a Institute for Space Imaging Science, University of Lethbridge, Alberta, T1K 3M4, Canada; b Joint

Cryogenic Detectors for Infrared Astronomy: the Single Aperture Far-InfraRed (SAFIR) Observatory

WaFIRS, a Waveguide Far-IR Spectrometer: Enabling Space-Borne Spectroscopy of High-z Galaxies in the Far-IR and Submm.

SPIRE. A Bolometer Instrument for FIRST. A Proposal to the European Space Agency in response to the ESA Call For Proposals.

arxiv:astro-ph/ v1 13 Jan 2004

R. D. Gehrz a E. E. Becklin b, and Göran Sandell b

THE PACS INSTRUMENT. A. Poglitsch 1 and B. Altieri 2. 1 Introduction

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

FIFI-LS Commissioning

Thoughts on Astrophysics with nano/6u cubesats

SPIRE/PACS Parallel Mode

HAWC (High Resolution Airborne Wideband Camera) A Facility Camera for SOFIA

Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial

Observing with the Infrared Spectrograph

SPIRE Observers Manual

Continuum Submillimetre Astronomy from UKIRT. Ian Robson UK ATC

THE GAS MASS AND STAR FORMATION RATE

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Goals of the meeting. Catch up with JWST news and developments: ERS and GO call for proposals are coming!!

Infrared Astronomy. Generally ~ 1μm (10,000 Å) few hundred μm

Astronomy 203 practice final examination

Distant galaxies: a future 25-m submm telescope

Studies of diffuse UV radiation

Notes: Infrared Processing and Analysis Center (IPAC). IPAC was founded to process IRAS data and has been expanded to other space observatories.

Cecilia Fariña - ING Support Astronomer

The EarthCARE mission: An active view on aerosols, clouds and radiation

Submillimetre astronomy

Space Cryogenics at the Rutherford Appleton Laboratory

The High Resolution Spectrometer for SOFIA

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers

UVIT IN ORBIT CALIBRATIONS AND CALIBRATION TOOLS. Annapurni Subramaniam IIA (On behalf of the UVIT team)

Planck and Virtual Observatories: Far Infra-red / Sub-mm Specificities

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

Chris Pearson: RAL Space. Chris Pearson: April

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

The JCMT Legacy Survey

A Science Vision for SOFIA

1 A photometric probe for Pan-STARRS

The SPICA infrared space observatory project status

Detectors for IR astronomy

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder

SPIRE Spectrometer data analysis

JWST/NIRSpec. P. Ferruit. (ESA JWST project scientist) Slide #1

Radio spectroscopy. Annoying question at a NSF Science and Technology Center Review

CONFUSION NOISE AND BACKGROUND

Introduction to SDSS -instruments, survey strategy, etc

Spectral line fitting of an astronomical source

Spectral survey analysis: the WEEDS package

arxiv: v1 [astro-ph.im] 22 Feb 2012

IR sounder small satellite for polar orbit weather measurements

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Astronomical Experiments for the Chang E-2 Project

1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team

PILOT balloon experiment

Properties of Thermal Radiation

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team

arxiv: v1 [astro-ph.im] 10 Oct 2013

Astronomical calibrations of the AKARI Far-Infrared Surveyor

Outline. Mm-Wave Interferometry. Why do we care about mm/submm? Star-forming galaxies in the early universe. Dust emission in our Galaxy

Figure 1. An artist's impression of a FIRST design (with payload module based on the ISO cryostat) in space. The approximate dimensions are: height 9

ICE IN THE FAR-IR & DIVINER 3. Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese Additional Contributions: Tim Schofield & Paul Hayne

Marco Polo ESA Cosmic Visions Candidate Mission Near-Earth Object Sample Return Mission. Asteroid Thermal Mapping Spectrometer

Reading Clicker Q. Spectroscopy analyzing the light. What light gets through? Instruments in the Focal Plane. ASTR 1040 Accel Astro: Stars & Galaxies

The Orbiting Carbon Observatory (OCO)

Transcription:

FIRST carrier spacecraft Height 9 m Width 4.5 m Launch mass 3300 kg Power 1 kw Launch vehicle Ariane 5 Orbit Lissajous around L2 Science data rate 100 kbps Telescope diametre 3.5 m Telescope WFE 10 µm (goal 6 µm ) Telescope temperature 70-90 K Abs pointing (68%) <3.7 (goal <1.5 ) Rel pointing (68%) <0.3 (goal <0.3 ) Helium II temperature < 1.65 K Lifetime in L2 (spec) > 3 yrs Toledo, 12-15 December 2000 Göran L. Pilbratt http://astro.esa.int/first Viewgraph 1 7/12/2000 Unique characteristics of FIRST: FIRST is the first space facility to completely cover the entire far infrared and submillimetre (60-670 µm) range Low emissivity (few %), passively cooled (70-90 K), large telescope (3.5 m) Total absence of atmospheric absorption - full access to this poorly explored spectral range Total absence of atmospheric emission - low and stable background across the whole range Deep photometry & full spectral coverage! Forλ < 200 µm FIRST has much larger - and andmittedly much warmer - telescope than earlier cryogenic telescope missions ISO / SIRTF / Astro-F In the FIRST band, the SOFIA airborne facility has warmer, smaller, higher emissivity telescope, and residual atmospheric absorption and emission FIRST will offer a large amount of observing time: longer lifetime (specification >3 years) than ISO - very roughly 1000 SOFIA flights a year - approx 2/3 open time Toledo, 12-15 December 2000 Göran L. Pilbratt http://astro.esa.int/first Viewgraph 2 7/12/2000

3KRWRGHWHFWRU$UUD\&DPHUD 6SHFWURPHWHU3$&6 P,PDJLQJ3KRWRPHWU\DQG6SHFWURVFRS\,QVWUXPHQW&RQFHSW,PDJLQJSKRWRPHWU\ ± WZREDQGVVLPXOWDQHRXVO\RU PDQG PZLWK GLFKURLFEHDPVSOLWWHU ± WZRILOOHGERORPHWHUDUUD\V[DQG [SL[HOV ± SRLQWVRXUFHGHWHFWLRQOLPLWaP-\ σk,qwhjudoilhogolqhvshfwurvfrs\ ± UDQJH PZLWK[SL[HOV LPDJHVOLFHUDQGORQJVOLWJUDWLQJ VSHFWURJUDSK5a ± WZR[*H*DSKRWRFRQGXFWRU DUUD\VVWUHVVHGXQVWUHVVHG ± SRLQWVRXUFHGHWHFWLRQOLPLW «[ :P σk )RFDO3ODQH)RRWSULQW 2EVHUYLQJ0RGHV &RPELQDWLRQVRILQVWUXPHQWPRGHVDQGVDWHOOLWHSRLQWLQJPRGHV,QVWUXPHQWPRGHV ± GXDOEDQGSKRWRPHWU\ IXOOVSDWLDOVDPSOLQJLQHDFKEDQG ORQJZDYHERORPHWHUDUUD\LPDJLQJ PEDQG VKRUWZDYHERORPHWHUDUUD\LPDJLQJRU PEDQG ± VLQJOHEDQGSKRWRPHWU\ ORQJZDYHERORPHWHUDUUD\LPDJLQJ PEDQG RU VKRUWZDYHERORPHWHUDUUD\LPDJLQJRU PEDQG VWDQGDUGPRGHIRU3$&663,5(SDUDOOHOPRGH ± OLQHVSHFWURVFRS\ REVHUYDWLRQRILQGLYLGXDOOLQHV ORQJZDYHSKRWRFRQGXFWRUDUUD\LQ PEDQG VKRUWZDYHSKRWRFRQGXFWRUDUUD\LQRU PEDQG ZDYHOHQJWKLQSULPDU\EDQGGHWHUPLQHVZDYHOHQJWKLQVHFRQGDU\EDQG ± UDQJHVSHFWURVFRS\ REVHUYDWLRQRIH[WHQGHGZDYHOHQJWKUDQJHV ± FRQWLQXRXVÃVFDQÃIXOOÃUHVROXWLRQÃRUÃVWHSVÃ6('ÃVDPSOLQJ ORQJZDYHSKRWRFRQGXFWRUDUUD\LQ PEDQG VKRUWZDYHSKRWRFRQGXFWRUDUUD\LQRU PEDQG 3RLQWLQJPRGHV ± VWDUHUDVWHUOLQHVFDQ ± ZLWKZLWKRXWQRGGLQJ

3KRWRGHWHFWRU$UUD\&DPHUD 6SHFWURPHWHU3$&6 P,PDJLQJ3KRWRPHWU\DQG6SHFWURVFRS\,QVWUXPHQW3HUIRUPDQFH3DUDPHWHUV 6SHFWUDOUHVROXWLRQDVDIXQFWLRQ RIZDYHOHQJWKVSHFWURVFRS\IRUWKH WKUHHXVHGJUDWLQJRUGHUV VWRUGHUUHGGHWHFWRU P QGRUGHUEOXHGHWHFWRU P UGRUGHUEOXHGHWHFWRU P spectroscopy photometry λ(µm) 60 90 130 180 60 90 90 130 130 210 detection limit (5σ, 1 hour) 7.8 (5.5)* 10-18 Wm -2 4.0 (2.8)* 10-18 Wm -2 2.8 (2.0)* 10-18 Wm -2 2.5 (1.8)* 10-18 Wm -2 3.1 (2.2)* mjy 3.0 (2.1)* mjy 3.2 (2.3)* mjy *) with on-array chopping 3RLQWVRXUFHGHWHFWLRQVHQVLWLYLW\LQSKRWRPHWU\DQGVSHFWURVFRS\PRGHV'XHWRWKHKLJKWKHUPDO EDFNJURXQGRIWKH),567WHOHVFRSHDOOSKRWRPHWULFREVHUYDWLRQVUHTXLUHVSDWLDOPRGXODWLRQHLWKHU ZLWKWKHLQWHUQDOFKRSSHURUE\VFDQQLQJRIWKHVDWHOOLWH)RUFRPSDFWREMHFWVRQDUUD\FKRSSLQJ HIIHFWLYHO\GRXEOHVWKHLQWHJUDWLRQWLPHRQVRXUFHFRPSDUHGWRFRQYHQWLRQDORIIVRXUFHFKRSSLQJDV LQGLFDWHGE\WKHYDOXHVJLYHQLQSDUHQWKHVHV,WLVDGYLVDEOHWRXVHWKHPRUHFRQVHUYDWLYHVHQVLWLYLW\ QXPEHUVIRUHVWLPDWHVRIUHTXLUHGREVHUYLQJWLPHV )RFDO3ODQH8QLW/D\RXW Photometer Blue Bolometer 0.3 K Cooler Red Bolometer sgegadetector Red Spectrometer Chopper Black Body I and II Black Body Entrance Filter Wheel I Slicer Grating Grating Drive Encoder Spectrometer Filter Wheel II sgega Detector Blue Spectrometer

Summary of SPIRE Scientific Capabilities Main scientific design drivers Wide-area extragalactic and galactic photometric surveys with spectroscopic follow-up Imaging medium resolution spectroscopy of the ISM and star-forming regions in own and nearby galaxies. 3-band imaging photometer (simultaneous observation in 3 bands) Wavelengths (µm) Beam FWHM (arcsec.) Field of view (arcmin.) 250 350 17 24 4x8 Estimated sensitivity (mjy, 5-σ; 1 hr) 4.0 (req.) Fully-sampled map 16 (req.) 500 35 2.0 (goal) 8.0 (goal) in all bands in all bands Imaging Fourier Transform Spectrometer (FTS) Wavelength range (µm) 200-400 (req.) 200-670 (goal) Simultaneous imaging observation of the whole spectral band Field of view (arcmin) 2.0 (req.) 2.6 (goal) -1 Max. spectral resolution (cm ) 0.4 (req.) 0.04 (goal) -1 Min. spectral resolution (cm ) 2 (req.) 4 (goal) Estimated Sensitivity (200-400 µm): Line flux (W m-2 x 10-17, 5-σ; 1 hr) 6.0 (req.) 3.0 (goal) Map 18 (req.) 9.0 (goal) Estimated Sensitivity (200-400 µm):spectrophotometry at σ = 1 cm-1 (mjy, 5-σ; 1 hr) 200 (req.) 100 (goal) Map 600 (req.) 300 (goal) The FTS is optimised for λ < 400 µm. Sensitivity is expected to decline by roughly a factor of two between 400 and 670 µm (approximately linearly with wavelength).

The Heterodyne Instrument for FIRST HIFI Science Capabilities Frequency coverage: ½480 1250 GHz (625-240 µm) [Bands 1-5] ½1410 1910 GHz (212-157 µm) [Bands 6L, 6H] Near-quantum noise limit sensitivity (goal <3hν/k) Instantaneous IF bandwidth: 4 GHz Frequency Resolution 140 khz 280 khz 1 MHz Calibration Accuracy: 10% baseline; 3% goal HIFI Focal Plane Unit

Expected Performance Noise levels: Setting 4 GHz Resolution 1MHz DSB CSO Spectrum of Orion: 8 nights HIFI: expected less than 1 hour Total HIFI range in 12 hours (Schilke et al. 2000)