MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 12, 2013 Prof. Alan Guth PROBLEM SET 7

Similar documents
Energy Density: u = ρc 2 ( kt) 1 Pressure: p = u. 3 ζ kt, π 2 ( hc) 3. Entropy density:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 24, 2013 Prof. Alan Guth PROBLEM SET 9

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 10 (The Last!)

QUIZ 3. Quiz Date: December 7, 2016

Matter vs. Antimatter in the Big Bang. E = mc 2

PROBLEM SET 10 (The Last!)

.26 QUIZ 3 SOLUTIONS, FALL 21 p. 3 (5 points) Which of following describes Sachs-Wolfe effect? Photons from fluid which had a velocity toward us along

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 5, 2013 Prof. Alan Guth PROBLEM SET 4

THERMAL HISTORY OF THE UNIVERSE

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Chapter 27 The Early Universe Pearson Education, Inc.

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy

Cosmology - Redshift and Radiation ASTR 2120 Sarazin

Physics of the hot universe!

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Lecture 19 Big Bang Nucleosynthesis

Lecture 2: The First Second origin of neutrons and protons

Stochastic Backgrounds

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

Cosmology and particle physics

PAPER 73 PHYSICAL COSMOLOGY

Lecture 24: Cosmology: The First Three Minutes. Astronomy 111 Monday November 27, 2017

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe February 29, 2000 Prof.

Modern Cosmology Solutions 4: LCDM Universe

Chapter 27: The Early Universe

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Early (Expanding) Universe. Average temperature decreases with expansion.

The Expanding Universe

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc.

7 Relic particles from the early universe

Astronomy 182: Origin and Evolution of the Universe

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

Lecture Notes 1: Was There a Beginning of Time? (Part 1)

Cosmic Background Radiation

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

MIT Exploring Black Holes

Astro-2: History of the Universe

Lecture 17: the CMB and BBN

The Early Universe and the Big Bang

The first 400,000 years

Cosmic Microwave Background

14 Lecture 14: Early Universe

Nucleosíntesis primordial

Fundamental Particles

5.111 Lecture Summary #5 Friday, September 12, 2014

Primordial (Big Bang) Nucleosynthesis

ASTR 101 General Astronomy: Stars & Galaxies

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

Lecture 05. Cosmology. Part I

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time:

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Introduction to Inflation

The Early Universe. 1. Inflation Theory: The early universe expanded enormously in a brief instance in time.

REVIEW PROBLEMS FOR QUIZ 3

1. Why photons? 2. Photons in a vacuum

Thermodynamics in Cosmology Nucleosynthesis

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Par$cle Astrophysics

The Dark Matter Problem

Astronomy 182: Origin and Evolution of the Universe

The Cosmic Microwave Background

Lecture notes 21: Nucleosynthesis. Measuring Cosmological Parameters

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

The Beginning of the Universe 8/11/09. Astronomy 101

Galaxies 626. Lecture 3: From the CMBR to the first star

AY127 Problem Set 3, Winter 2018

This is far scarier! Not recommended!

John Ellison University of California, Riverside. Quarknet 2008 at UCR

The Expanding Universe

Cosmology: An Introduction. Eung Jin Chun

Lecture 3: Big Bang Nucleosynthesis

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Astronomy 182: Origin and Evolution of the Universe

Cosmology: Building the Universe.

Hot Big Bang model: early Universe and history of matter

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

CMB & Light Degrees of Freedom

1920s 1990s (from Friedmann to Freedman)

Astronomy 233 Winter 2009 Physical Cosmology Week 3 Distances and Horizons Joel Primack University of California, Santa Cruz

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3)

Mass (Energy) in the Universe:

Brief Introduction to Cosmology

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years

Inflationary Universe and. Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation

Survey questions. Inflationary Universe and. Survey Questions. Survey questions. Survey questions

Solutions for Assignment of Week 06 Introduction to Astroparticle Physics

Cosmology and particle physics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

Computational Physics and Astrophysics

Neutrino Mass Limits from Cosmology

Astro-2: History of the Universe. Lecture 12; May

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT

Study Guide for ISP205 Final

Transcription:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 12, 2013 Prof. Alan Guth PROBLEM SET 7 DUE DATE: Friday, November 15, 2013 READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chapter 8 (Epilogue: The Prospect Ahead), and Afterword: Cosmology Since 1977. There is no reading assignment from Ryden this week, but if you would like to read ahead, you will be asked to read Chapter 9 (The Cosmic Microwave Background) and Chapter11(Inflation and the Very Early Universe) before the end of the semester. UPCOMING QUIZ: Thursday, December 5, 2013. PROBLEM 1: ENTROPY AND THE BACKGROUND NEUTRINO TEMPERATURE (15 points) The formula for the entropy density of black-body radiation is given in Lecture Notes 6. The derivation of this formula has been left to the statistical mechanics course that you either have taken or hopefully will take. For our purposes, the important point is that the early universe remains very close to thermal equilibrium, and therefore entropy is conserved. The conservation of entropy applies even during periods when particles, such as electron-positron pairs, are freezing out of the thermal equilibrium mix. Since total entropy is conserved, the entropy density falls off as 1/a 3 (t). When the electron-positron pairs disappear from the thermal equilibrium mixture as kt falls below m e c 2 =0.511 MeV, the weak interactions have such low cross sections that the neutrinos have essentially decoupled. To a good approximation, all of the energy and entropy released by the annihilation of electrons and positrons is added to the photon gas, and the neutrinos are unaffected. Use these facts to show that as electron-positron pair annihilation takes place, at γ increases by a factor of (11/4) 1/3, while at ν remains constant. It follows that after the disappearance of the electron-positron pairs, T ν /T γ =(4/11) 1/3. As far as we know, nothing happens that significantly effects this ratio right up to the present day. So we expect today a background of thermal neutrinos which are slightly colder than the 2.7 K background of photons.

8.286 PROBLEM SET 7, FALL 2013 p. 2 PROBLEM 2: FREEZE-OUT OF MUONS (25 points) A particle called the muon seems to be essentially identical to the electron, except that it is heavier the mass/energy of a muon is 106 MeV, compared to 0.511 MeV for the electron. The muon (µ ) has the same charge as an electron, denoted by e. There is also an antimuon (µ + ), analogous to the positron, with charge +e. The muon and antimuon have the same spin as the electron. There is no known particle with a mass between that of an electron and that of a muon. (a) The formula for the energy density of black-body radiation, as given by Eq. (6.48) of the lecture notes, π 2 (kt ) 4 u = g, 30 ( hc) 3 is written in terms of a normalization constant g. What is the value of g for + the muons, taking µ and µ together? (b) When kt is just above 106 MeV as the universe cools, what particles besides the muons are contained in the thermal radiation that fills the universe? What is the contribution to g from each of these particles? (c) As kt falls below 106 MeV, the muons disappear from the thermal equilibrium radiation. At these temperatures all of the other particles in the black-body radiation are interacting fast enough to maintain equilibrium, so the heat given off from the muons is shared among all the other particles. Letting a denote the Robertson-Walker scale factor, by what factor does the quantity at increase when the muons disappear? PROBLEM 3: THE REDSHIFT OF THE COSMIC MICROWAVE BACKGROUND (25 points) It was mentioned in Lecture Notes 6 that the black-body spectrum has the peculiar feature that it maintains its form under uniform redshift. That is, as the universe expands, even if the photons do not interact with anything, they will continue to be described by a black-body spectrum, although at a temperature that decreases as the universe expands. Thus, even though the cosmic microwave background (CMB) has not been interacting significantly with matter since 350,000 years after the big bang, the radiation today still has a black-body spectrum. In this problem we will demonstrate this important property of the black-body spectrum. The spectral energy density ρ ν (ν, T ) for the thermal (black-body) radiation of photons at temperature T was stated in Lecture Notes 6 as Eq. (6.71), which we can rewrite as 16π 2 hν 3 1 ρ ν (ν, T ) =, (P3.1) c 3 e hν/kt 1

8.286 PROBLEM SET 7, FALL 2013 p. 3 where h =2π h is Planck s original constant. ρ ν (ν, T ) dν is the energy per unit volume carried by photons whose frequency is in the interval [ν, ν + dν]. In this problem we will assume that this formula holds at some initial time t 1, when the temperature had some value T 1. We will let ρ(ν, t) denote the spectral distribution for photons in the universe, which is a function of frequency ν and time t. Thus, our assumption about the initial condition can be expressed as ρ (ν, t 1 )= ρ ν (ν, T 1 ). (P3.2) The photons redshift as the universe expands, and to a good approximation the redshift and the dilution of photons due to the expansion are the only physical effects that cause the distribution of photons to evolve. Thus, using our knowledge of the redshift, we can calculate the spectral distribution ρ(ν, t 2 ) at some later time t 2 >t 1. It is not obvious that ρ(ν, t 2 ) will be a thermal distribution, but in fact we will be able to show that ρ (ν, t 2 )= ρ ν, T (t 2 ), (P3.3) where in fact T (t 2 ) will agree with what we already know about the evolution of T in a radiation-dominated universe: a(t 1 ) T (t 2 )= T 1. (P3.4) a(t 2 ) To follow the evolution of the photons from time t 1 to time t 2, we can imagine selecting a region of comoving coordinates with coordinate volume V c. Within this comoving volume, we can imagine tagging all the photons in a specified infinitesimal range of frequencies, those between ν 1 and ν 1 + dν 1. Recalling that the energy of each such photon is hν, the number dn 1 of tagged photons is then ρ (ν 1,t 1 ) a 3 (t 1 ) V c dν 1 dn 1 =. (P3.5) hν 1 (a) We now wish to follow the photons in this frequency range from time t 1 to time t 2, during which time each photon redshifts. At the latter time we can denote the range of frequencies by ν 2 to ν 2 + dν 2. Express ν 2 and dν 2 in terms of ν 1 and dν 1, assuming that the scale factor a(t) isgiven. (b) At time t 2 we can imagine tagging all the photons in the frequency range ν 2 to ν 2 +dν 2 that are found in the original comoving region with coordinate volume V c. Explain why the number dn 2 of such photons, on average, will equal dn 1 as calculated in Eq. (P3.5).

8.286 PROBLEM SET 7, FALL 2013 p. 4 (c) Since ρ(ν, t 2 ) denotes the spectral energy density at time t 2,wecan write ρ (ν 2,t 2 ) a 3 (t 2 ) V c dν 2 dn 2 =, (P3.6) hν 2 using the same logic as in Eq. (P3.5). Use dn 2 = dn 1 to show that a 3 (t 1 ) ρ (ν 2,t 2 )= ρ (ν 1,t 1 ). (P3.7) a 3 (t 2 ) Use the above equation to show that Eq. (P3.3) is satisfied, for T (t) given by Eq. (P3.4). Total points for Problem Set 7: 65.

MIT OpenCourseWare http://ocw.mit.edu 8.286 The Early Universe Fall 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.