Pion photoproduction in a gauge invariant approach

Similar documents
Meson-baryon interaction in the meson exchange picture

πn scattering and π photoproduction in a dynamical coupled-channels model

Coupled channel dynamics in Λ and Σ production

MESON PRODUCTION IN NN COLLISIONS

Analyticity and crossing symmetry in the K-matrix formalism.

Understanding the basic features of Cascade Photoproduction

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Dynamical understanding of baryon resonances

Dynamical coupled-channels channels study of meson production reactions from

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Isospin-breaking corrections to the pion nucleon scattering lengths

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Satoshi Nakamura (EBAC, JLab)

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Light Baryon Spectroscopy What have we learned about excited baryons?

Coupled-channel Bethe-Salpeter

Nucleon Spectroscopy with CLAS

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

arxiv: v2 [nucl-th] 18 Sep 2009

Report on NSTAR 2005 Workshop

Phenomenological aspects of kaon photoproduction on the nucleon

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Bethe Salpeter studies of mesons beyond rainbow-ladder

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire

A Dyson-Schwinger equation study of the baryon-photon interaction.

Medium Modifications of Hadrons and Electromagnetic Probe

Covariant quark-diquark model for the N N electromagnetic transitions

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Valence quark contributions for the γn P 11 (1440) transition

Exotic baryon resonances in the chiral dynamics

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

Resonance properties from finite volume energy spectrum

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

PoS(LATTICE2014)169. The Nγ transition form factors on the lattice. Akaki Rusetsky. Andria Agadjanov. Véronique Bernard

Pion-nucleon scattering around the delta-isobar resonance

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

arxiv: v1 [nucl-th] 13 Apr 2011

Coulomb effects in pionless effective field theory

Photoexcitation of N* Resonances

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Pion-Nucleon P 11 Partial Wave

Asymmetry dependence of Gogny-based optical potential

Nucleon excited states on the lattice

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Structure of near-threshold s-wave resonances

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Standard Model of Particle Physics SS 2013

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

The Quest for Light Scalar Quarkonia from elsm

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

The search for missing baryon resonances

Dynamical coupled channel calculation of pion and omega meson production

Bare propagator poles in coupled-channel. channel models (Possible link between microscopic theories and phenomenological models)

HLbl from a Dyson Schwinger Approach

Nucleon resonances from coupled channel reaction model

Physics Program at COSY-Jülich with Polarized Hadronic Probes

Baroion CHIRAL DYNAMICS

Jacopo Ferretti Sapienza Università di Roma

Overview of N* Physics

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Baryon Spectroscopy: what do we learn, what do we need?

Electroexcitation of Nucleon Resonances BARYONS 02

arxiv: v2 [nucl-th] 25 Oct 2018

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,#

arxiv: v1 [nucl-ex] 20 Dec 2017

arxiv: v1 [hep-ex] 22 Jun 2009

8 September Dear Paul...

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Modern Theory of Nuclear Forces

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

arxiv: v2 [hep-ph] 1 Feb 2018

Physik Department, Technische Universität München D Garching, Germany. Abstract

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

arxiv: v1 [nucl-th] 6 Aug 2008

Homework 3: Group Theory and the Quark Model Due February 16

Nucleon EM Form Factors in Dispersion Theory

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

Standard Model of Particle Physics SS 2012

Faddeev equations: a view of baryon properties

Kaon Photoproduction Results from CLAS

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

The Strong Interaction and LHC phenomenology

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

Two photon exchange: theoretical issues

Cornelius Bennhold George Washington University

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

arxiv:nucl-th/ v1 28 Aug 2001

Transcription:

Pion photoproduction in a gauge invariant approach F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU) Jun., 2 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Introduction Study of N is important for understanding of strong interactions A clear understanding of N structure, spectrum and decay will reveal the role of confinement and chiral symmetry in QCD non-perturbative region. Dynamical coupled-channel models are needed N states are unstable and couple strongly with meson-baryon continuum states. In order to extract N parameters and understand N structures, dynamical coupled-channel models are needed to analyze the meson production data. Gauge invariance is important for photo-production Gauge invariance is a fundamental symmetry. Without it results become arbitrary. Note current conservation is necessary but not sufficient for gauge invariance. This work: gauge invariant approach for π photo-production in Jülich dynamical coupled-channel model F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 2 / 9

Hadronic scattering Γ = F + X G F S = S + S F G Γ S 8 8 X = U + U G X 7 T = Γ S Γ + X F : bare vertex S : bare propagator X : non-polar part of T matrix T : full T matrix Γ : dressed vertex S : dressed propagator U : driving term of X F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 3 / 9

Jülich πn meson-exchange model Dynamical coupled-channel model: Nπ, Nη, π, Nρ, Nσ, ΛK, ΣK 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8.4.2 Re S3 Re P33.4.2 -.2 -.4.8 Re S Re P3 Im P33 -.2 -.4.8.6.6.4.2.4 Im S Im S3 Im P3.4.2.4.2.2 -.2 -.4 Re P Re P3 Re D3 Re D33 -.2 -.4.8.6.4.2 Im P 2 4 6 8 W [MeV] Im P3 2 4 6 8 W [MeV] Im D3 2 4 6 8 W [MeV] Im D33 2 4 6 8 W [MeV].8.6.4.2 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 4 / 9

Photo-production amplitude H. Haberzettl, PRC6(997)24 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Photo-production amplitude H. Haberzettl, PRC6(997)24 γ M = + + + M µ = M µ s + M µ u + M µ t + M µ int F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Photo-production amplitude H. Haberzettl, PRC6(997)24 γ M = + + + M µ = M µ s + M µ u + M µ t + M µ int - = + U + X + + + U = + + + + + U F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Gauge invariance Without gauge invariance results become arbitrary Current conservation k µ M µ = necessary but not sufficient F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Gauge invariance Without gauge invariance results become arbitrary Current conservation k µ M µ = necessary but not sufficient Electromagnetic couplings to driving terms 8 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Gauge invariance Without gauge invariance results become arbitrary Current conservation k µ M µ = necessary but not sufficient Electromagnetic couplings to driving terms 8 8 Amplitude results from a highly non-linear equation F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Gauge invariance Without gauge invariance results become arbitrary Current conservation k µ M µ = necessary but not sufficient Electromagnetic couplings to driving terms 8 8 Amplitude results from a highly non-linear equation Inner consistency requires generalized Ward-Takahashi identity k µ M µ = Γ s τ S p+k Q i S p + S p Q f S p k Γ u τ + p p +k Q π p p Γ t τ Q: charge operator S: nucleon propagator : pion propagator Γ : dressed vertex F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Practical strategy = + U + X + + + U } {{ } M µ a } {{ } M µ a Gauge invariance condition: k µ M µ = Γ s τ S p+k Q i S p M µ int = M µ a + X G (M µ t + M µ u + M µ a ) + S p Q f S p k Γ u τ + p p +k Q π p p Γ t τ k µ M µ a = ( U G)( Γ s e i + Γ u e f + Γ t e π ) k µ U G (M µ tl + Mµ ul ) Approximating M a µ under gauge invariance condition: M a µ = ( U G) M c µ U G (M µ tl + Mµ ul ) + Tµ Interaction current: k µ M µ c = Γ s e i + Γ u e f + Γ t e π, k µ T µ = M µ int = M µ c + T µ + X G [(M µ ut + Mµ tt ) + Tµ ] F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 7 / 9

Choosing the contact current M µ c Constraints: gauge invariance contact term crossing symmetry Introduce an auxiliary current C µ : C µ (2q k) µ ( ) (2p = e π t q 2 f t ˆF k) µ ( ) (2p + k) e f u p 2 f u ˆF µ ( ) e i s p 2 f s ˆF ˆF = ĥ( δ s f s ) ( δ u f u )( δ t f t ) k, p, q, p : 4-momenta for incoming γ, N & outgoing π, N ĥ: fit parameter The contact current M c µ can be written as {[ ] M c µ = g q/ βk/ πγ λ + ( λ) m C µ γ µ } ( λ) + m m + m [e πf t βk ρ C ρ ] β: fit parameter Check gauge invariance: M µ c satisfies k µ M µ c = Γ s e i + Γ u e f + Γ t e π F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 8 / 9

Reaction theory: all together γ M = + + + Full photo-production current: M µ = M µ s + Mµ u + Mµ t + M µ int M µ int = M µ c + Tµ + X G [(M µ ut + Mµ tt ) + Tµ ] M µ satisfies the generalized Ward-Takahashi identity (gauge invariant) k µ M µ = Γ s τ S p+k Q i S p + S p Q f S p k Γ u τ + p p +k Q π p p Γ t τ T µ : undetermined transverse contact current (set to be zero in this work) X: non-polar part of hadronic scattering (Jülich coupled-channel πn model) F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 9 / 9

Results: dσ/dω for γ p π + n + n) ( b/sr) d /d ( p 36 27 8 9 24 6 8 24 6 8 8 2 6 (2, 62) 6 2 Jülich-Georgia (28, 86) (32, 27) (4, 277) (4, 33) (, 349) (, 383) (6, 46) (6, 449) (72, 497) (77, 28) (82, 8) (87, 88) (92, 67) (97, 646) 6 2 6 2 (deg.) (36, 247) 6 2 8 dσ/dω (mb/sr) 3 3 2 2 3 3 2 2 EBAC 3 3 3 W=4 MeV 3 W=62 MeV 3 W=78 MeV 3 W=86 MeV 2 2 2 2 2 2 6 2 8 6 2 8 6 2 8 6 2 8 3 3 3 W=29 MeV 3 W=27 MeV 3 W=232 MeV 3 W=263 MeV 2 2 2 2 2 2 6 2 8 6 2 8 6 2 8 6 2 8 W=28 MeV W=299 MeV W=47 MeV W=48 MeV 6 2 8 6 2 8 W=63 MeV W=632 MeV 6 2 8 6 2 8 6 2 8 6 2 8 W=496 MeV W=3 MeV W=44 MeV W=74 MeV 6 2 8 6 2 8 θ (deg.) 6 2 8 6 2 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Results: Σ γ for γ p π + n + ( p n) 6 2 Jülich-Georgia.6 (244, 7) (27, 82) (322, 29) (3, 24).8. -.8.6 (4, 277) (4, 33) (, 349) (, 383).8. -.8.6 (6, 46) (6, 449) (688, 474) (7, 3).8. -.8.6 (8, 43) (848, 72) (9, 63) (92, 633).8. -.8 6 2 6 2 (deg.) 6 2 8 Σ.... -. -. -. -. EBAC W=4 MeV W=62 MeV W=78 MeV W=86 MeV.. 6 2 8 6 2 8 6 2 8 6 2 8 W=29 MeV W=27 MeV W=232 MeV W=263 MeV.. 6 2 8 6 2 8 6 2 8 6 2 8 W=28 MeV W=299 MeV W=47 MeV W=48 MeV. 6 2 8 6 2 8 6 2 8 6 2 8 W=496 MeV W=3 MeV W=44 MeV W=74 MeV... 6 2 8 -. - 6 2 8 6 2 8 W=63 MeV W=632 MeV. -. - -. 6 2 8 θ (deg.) - 6 2 8... -. - 6 2 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Results: dσ/dω for γ p π p p) ( b/sr) d /d ( p 2 39 26 3 2 4 7 6 4 2 6 4 2 (24, 8) 6 2 Jülich-Georgia (278, 84) (32, 27) (4, 277) (4, 33) (, 36) (, 386) (97, 44) (62, 4) (7, 484) (78, 7) (88, 48) (89, 79) (99, 68) (97, 636) 6 2 6 2 (deg.) (36, 247) 6 2 8 dσ/dω (mb/sr) 3 2 4 3 2 2 EBAC W=4 MeV 3 W=62 MeV 3 W=78 MeV 3 W=86 MeV 2 2 6 2 8 6 2 8 6 2 8 6 2 8 4 4 4 W=29 MeV W=27 MeV W=232 MeV W=263 MeV 3 3 3 2 6 2 8 6 2 8 6 2 8 6 2 8 W=28 MeV W=299 MeV W=47 MeV W=48 MeV 6 2 8 6 2 8 W=63 MeV W=632 MeV 6 2 8 6 2 8 6 2 8 6 2 8 W=496 MeV W=3 MeV W=44 MeV W=74 MeV 6 2 8 6 2 8 θ (deg.) 6 2 8 2 2 6 2 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 2 / 9

Results: Σ γ for γ p π p ( p p) 6 2 Jülich-Georgia.6 (244, 7) (27, 82) (322, 29) (3, 24).8. -.8.6 (4, 277) (4, 33) (, 349) (, 384).8. -.8.6 (6, 426) (666, 49) (73, 483) (769, 24).8. -.8.6 (8, 44) (862, 8) (89, 6) (96, 638).8. -.8 6 2 6 2 (deg.) 6 2 8 Σ. -.. -.. -.. -.. -.. EBAC W=4 MeV W=62 MeV W=78 MeV W=86 MeV. -. -. -. 8 6 2 8 6 2 8 6 2 6 2 8 W=29 MeV W=27 MeV W=232 MeV W=263 MeV.. -. -. -. 8 6 2 8 6 2 8 6 2 6 2 8 W=28 MeV W=299 MeV W=47 MeV W=48 MeV.. -. -. -. 8 6 2 8 6 2 8 6 2 6 2 8 W=496 MeV W=3 MeV W=44 MeV W=74 MeV. -. -. 6 2 8 6 2 8 W=63 MeV W=632 MeV. -. 6 2 8. 6 2 8 θ (deg.)... -. 6 2 8. 6 2 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 3 / 9

- Results: dσ/dω & Σ γ for γ n π p - p) ( b/sr) d /d ( n 48 36 24 2 27 8 9 27 8 9 8 2 6 (24, ) 6 2 Jülich-Georgia (27, 79) (33, 23) (39, 27) (436, 3) (, 3) (6, 48) (64, 444) 6 2 (36, 249) (4, 378) (7, 483) (748, 3) (8, 4) (8, 7) (9, 64) (9, 633) 6 2 6 2 8 (deg.) Differential cross section for γ n π p p) ( n.6.8. -.8.6.8. -.8.6.8. -.8.6.8. -.8 (2, 63) 6 2 Jülich-Georgia (3, 23) (33, 226) (4, 278) (4, 3) (, 3) (63, 438) (67, 463) (7, 489) (7, 4) (79, 39) (89, 7) (8, 7) (9, 64) (947, 632) 6 2 6 2 (deg.) (3, 24) 6 2 8 Photon spin asymmetry for γ n π p F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 4 / 9

Results: γ N πn total cross sections (mb).4.3.2...3.2...3.2.. p n p p Full results - - - - Contact term off n p data not included in the fit..2.3.4..6 W (GeV) F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 / 9

Resonance & background Splitting T = T P + T NP arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T NP Identifying T NP as T BG problematic T = T P + T NP T = a + a + O(z z ) z z a = a P + TNP T = T R + T BG a T R = z z T BG = T T R Pole position & residue are less model-dependent Re P 33 Im P 33.6.4.2 -.2 -.4.8.6.4.2 T P +T NP T NP T NP T P +T NP 2 3 4 z [MeV] T R & T BG more meaningful than T P & T NP to compare in various models F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Resonance & background Splitting T = T P + T NP arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T NP Identifying T NP as T BG problematic T = T P + T NP T = a + a + O(z z ) z z a = a P + TNP T = T R + T BG a T R = z z T BG = T T R Pole position & residue are less model-dependent Re P 33 Im P 33.6.4.2 -.2 -.4.8.6.4.2 T NP + a - /(z-z ) T NP T NP T NP + a - /(z-z ) 2 3 4 z [MeV] T R & T BG more meaningful than T P & T NP to compare in various models F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Resonance & background Splitting T = T P + T NP arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T NP Identifying T NP as T BG problematic T = T P + T NP T = a + a + O(z z ) z z a = a P + TNP T = T R + T BG a T R = z z T BG = T T R Pole position & residue are less model-dependent Re P 33 Im P 33.6.4.2 -.2 -.4.8.6.4.2 T NP T NP a + a - /(z-z ) a + a - /(z-z ) 2 3 4 z [MeV] T R & T BG more meaningful than T P & T NP to compare in various models F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 6 / 9

Poles & residues Table: Effective electromagnetic couplings g γ in helicity basis (PRELIMINARY). The st & 2nd lines for isospin /2 resonance correspond to results for p & n, respectively. Pole position [MeV] g γ /2 [MeV/2 ] g γ 3/2 [MeV/2 ] P 33 (232) 27 4 i.42. i 4.9 +.3 i P (44) 38 72 i.7.26 i.92 +.8 i D 3 (2) 3 47 i 3. + 2.4 i 2.8.34 i.99.84 i 4. +.68 i S (3) 2 64 i.2 +.87 i 4. 2. i S 3 (62) 92 37 i.43.9 i S (6) 666 7 i 3.3 + 2.67 i.22 2. i D 33 (7) 638 22 i.37 8.98 i 3.9 +.8 i P 3 (72) 66 i..4 i.4 +. i. + 2.7 i.28 3.23 i P 3 (9) 833 i 9.29 3. i g γ = a γ /gπ g π = a π F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 7 / 9

Summary & perspectives Reaction theory is based on Jülich dynamical coupled-channel model which describes πn scattering successfully Full photoproduction amplitudes satisfy the generalized Ward-Takahashi identity and thus are gauge invariant Both the differential cross sections and photon spin asymmetries for π photoproduction are described quite well up to s =.6 GeV Effective electromagnetic couplings (preliminary) are extracted by analytic continuation of the full amplitudes to un-physical Riemann sheet Resonance and background contributions will be studied Future plan: η- and K-photoproduction Electro-production F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 8 / 9

Importance of gauge invariance: p p p p γ None of the existing models can describe high-precision KVI data for coplanar geometries involving small p scattering angles. Lines: Martinus, Scholten, Tjon, PRC 8, 686 (998) PRC 6, 294 (997) Herrmann, Nakayama, Scholten, Arellano, NPA 82, 68 (99) d / [ b/rad sr 2 ] 2. 2..... =8 o =6 o =2 o Mart.I Mart.II Nak d / [ b/rad sr 2 ] 3. 2... =8 o, =6 o =8 o, =9 o =6 o, =9 o.. A y. A y. -. -. -. 6 9 2 6 9 2 [deg] 6 9 2 8 -. 6 9 2 6 9 2 [deg] 6 9 2 8 F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 9 / 9

Importance of gauge invariance: p p p p γ None of the existing models can describe high-precision KVI data for coplanar geometries involving small p scattering angles. Lines: Martinus, Scholten, Tjon, PRC 8, 686 (998) PRC 6, 294 (997) Herrmann, Nakayama, Scholten, Arellano, NPA 82, 68 (99) d / [ b/rad sr 2 ] 2. 2..... =8 o =6 o =2 o Mart.I Mart.II Nak d / [ b/rad sr 2 ] 3. 2... =8 o, =6 o =8 o, =9 o =6 o, =9 o.. A y. A y. -. -. -. 6 9 2 6 9 2 [deg] 6 9 2 8 -. 6 9 2 6 9 2 [deg] 6 9 2 8 Construct the contact current full amplitude obeys WTI (gauge invariant) [K. Nakayama & H. Haberzettl, PRC 8, (29)] d / [ b/rad sr 2 ] 2. 2..... =8 o =6 o =2 o d / [ b/rad sr 2 ] 3. 2... =8 o, =6 o =8 o, =9 o =6 o, =9 o.. A y. A y. -. -. -. 6 9 2 6 9 2 [deg] 6 9 2 8 (c) -. 6 9 2 6 9 2 [deg] 6 9 2 8 (d) F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 9 / 9

Importance of gauge invariance: p p p p γ None of the existing models can describe high-precision KVI data for coplanar geometries involving small p scattering angles. Lines: Martinus, Scholten, Tjon, PRC 8, 686 (998) PRC 6, 294 (997) Herrmann, Nakayama, Scholten, Arellano, NPA 82, 68 (99) d / [ b/rad sr 2 ] 2. 2..... =8 o =6 o =2 o Mart.I Mart.II Nak d / [ b/rad sr 2 ] 3. 2... =8 o, =6 o =8 o, =9 o =6 o, =9 o.. A y. A y. -. -. -. 6 9 2 6 9 2 [deg] 6 9 2 8 -. 6 9 2 6 9 2 [deg] 6 9 2 8 Construct the contact current full amplitude obeys WTI (gauge invariant) [K. Nakayama & H. Haberzettl, PRC 8, (29)] d / [ b/rad sr 2 ] 2. 2..... =8 o =6 o =2 o d / [ b/rad sr 2 ] 3. 2... =8 o, =6 o =8 o, =9 o =6 o, =9 o.. A y. A y. -. -. -. 6 9 2 6 9 2 [deg] 6 9 2 8 (c) -. 6 9 2 6 9 2 [deg] 6 9 2 8 It is important to properly take into account the interaction current for NN bremsstrahlung reaction! F. Huang, MENU2, Williamsburg Pion photo-production Jun., 2 9 / 9 (d)