The Anderson-Higgs Mechanism in Superconductors

Similar documents
On the Higgs mechanism in the theory of

Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws

Strongly Correlated Systems:

The Ginzburg-Landau Theory

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Quantum Theory of Matter

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Collective Effects. Equilibrium and Nonequilibrium Physics

From Landau s Order Parameter to Modern Disorder Fields

1 Superfluidity and Bose Einstein Condensate

What was the Nobel Price in 2003 given for?

Ginzburg-Landau theory of supercondutivity

APS March Meeting Years of BCS Theory. A Family Tree. Ancestors BCS Descendants

Ginzburg-Landau length scales

1 Interaction of Quantum Fields with Classical Sources

1 Quantum Theory of Matter

cond-mat/ Mar 1995

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

arxiv:cond-mat/ v3 [cond-mat.supr-con] 28 Oct 2007

Lecture 23 - Superconductivity II - Theory

Abrikosov vortex lattice solution

Superconductivity and Superfluidity

CONDENSED MATTER: towards Absolute Zero

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang

Chapter 1. Macroscopic Quantum Phenomena

Superconductivity. The Discovery of Superconductivity. Basic Properties

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Collective Effects. Equilibrium and Nonequilibrium Physics

Vortices in superconductors: I. Introduction

Quantum Theory of Matter

The Extended Gauge Transformations

Condensed Matter Option SUPERCONDUCTIVITY Handout

14.4. the Ginzburg Landau theory. Phys520.nb Experimental evidence of the BCS theory III: isotope effect

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

Phase transitions and critical phenomena

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

UNIVERSITÀ DEGLI STUDI DI GENOVA

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101

The Higgs particle in condensed matter

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

A variational approach to the macroscopic. Electrodynamics of hard superconductors

Superinsulator: a new topological state of matter

Superconductivity and the BCS theory

Ginzburg-Landau Theory: Simple Applications

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

A Hydrated Superconductor

A superconductor to superfluid phase transition in liquid metallic hydrogen

chapter 3 Spontaneous Symmetry Breaking and

Ginzburg-Landau Theory of Phase Transitions

Thermal Fluctuations of the superconducting order parameter in the Ginzburg-Landau theory

The Why, What, and How? of the Higgs Boson

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

Superfluid Helium-3: From very low Temperatures to the Big Bang

Versatility of the Abelian Higgs Model

Ferromagnetic superconductors

A Superfluid Universe

Birth of electroweak theory from an Imperial perspective

6.763 Applied Superconductivity Lecture 1

Supersolidity of excitons

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-8,November 2015 ISSN:

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Vortex States in a Non-Abelian Magnetic Field

Superconductivity. Dept of Phys. M.C. Chang

Figure 6.1: Schematic representation of the resistivity of a metal with a transition to a superconducting phase at T c.

Superconducting fluctuations, interactions and disorder : a subtle alchemy

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

Vortex drag in a Thin-film Giaever transformer

Supercondcting Qubits

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid

Baruch Rosenstein Nat. Chiao Tung University

The Superfluid-Insulator transition

Key symmetries of superconductivity

Genesis of Electroweak. Unification

Vortices in superconductors& low temperature STM

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Holographic superconductors

Deconfined Quantum Critical Points

Universal phase transitions in Topological lattice models


6.763 Applied Superconductivity Lecture 1

Phase transitions beyond the Landau-Ginzburg theory

Symmetry Breaking in Superconducting Phase Transitions

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Superconductivity and Quantum Coherence

arxiv:cond-mat/ v1 4 Aug 2003

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Mathematical Analysis of the BCS-Bogoliubov Theory

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

QFT at finite Temperature

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Superconductivity: approaching the century jubilee

Superconductors. An exciting field of Physics!

Quantum disordering magnetic order in insulators, metals, and superconductors

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

Transcription:

The Anderson-Higgs Mechanism in Superconductors Department of Physics, Norwegian University of Science and Technology Summer School "Symmetries and Phase Transitions from Crystals and Superconductors to the Higgs particle and the Cosmos" Dresden 2016 beamer-tu-log

References P. W. Anderson, Phys. Rev. 130, 439 (1962) P. Higgs, Phys. Rev. Lett. 13, 508 (1964). Nobel Prize 2013. F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964). Nobel Prize 2013. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964) H. Kleinert, Gauge fields in Condensed Matter Physics, (World Scientific, Singapore (1989) A. K. Nguyen and A. Sudbø, Phys. Rev B 60, 15307 (1999) J. Hove and A. Sudbø, Phys. Rev. Lett. 84, 3426 (2000) E. Babaev, A. Sudbø, and N. W. Ashcroft, Nature 431, 666 (2004) J. Smiseth, E. Smørgrav, E. Babaev, and A. Sudbø, Phys. Rev. B 71, 214509 (2005) A. Sudbø, The Anderson Higgs Mechanism for the Meissner-effect in superconductors, in K. Fossheim: Superconductivity: Discovery and Discoverers. Ten Physics Nobel Laureates Tell Their Stories, Springer (2013) F. S. Nogueira, A. Sudbø, and I. Eremin, Phys. Rev. B 92, 224507 (2015) P. N. Galteland and A. Sudbø, Phys. Rev. B 94, 054518 (2016) beamer-tu-log

Outline Basic concepts Cooper-pairing 1 Basic concepts Cooper-pairing 2 Order parameter of SFs and SCs 3 Lattice gauge theory Current loops Vortex loops

Overview Basic concepts Cooper-pairing What is the Higgs mechanism? Definition of the superconducting state Theories of superconductors Higgs Mechanism I: Mean field theory physics Higgs Mechanism II: Fluctuation physics

Basic concepts Cooper-pairing What is the Higgs mechanism?

Basic concepts Cooper-pairing What is the Higgs mechanism? The Higgs mechanism is the dynamical generation of a mass of a gauge-boson (mediating interactions) resulting from the coupling to some matter field. In superconductors, it is the generation of a mass of the photon. Superconductors have radically different electrodynamics compared to non-superconductors. The Higgs mass therefore distinguishes a metallic state from a superconducting state.

Basic concepts Cooper-pairing Defining properties of a superconductor H. Kammerling-Onnes (1911). Nobel Prize 1913. But: SC is much more than just perfect conductivity! beamer-tu-log

Basic concepts Cooper-pairing Defining properties of a superconductor SC: Perfect diamagnet! Completely different from a perfect conductor! W. Meissner, R. Oechsenfeld (1933) beamer-tu-log

Cooper-pairing Basic concepts Cooper-pairing All theories of superconductivity somehow involve the concept of Cooper-pairing: Two electrons experience an effective attractive (!) interaction and form pairs. NB!! No more than pairs! (L. Cooper (1956); J. Bardeen, L. Cooper, R. J. Schrieffer (1957)). beamer-tu-log

Cooper-pairing Basic concepts Cooper-pairing All theories of superconductivity somehow involve the concept of Cooper-pairing: Two electrons experience an effective attractive (!) interaction and form pairs. NB!! No more than pairs! (L. Cooper (1956); J. Bardeen, L. Cooper, R. J. Schrieffer (1957)). beamer-tu-log

Cooper-pairing Basic concepts Cooper-pairing All theories of superconductivity somehow involve the concept of Cooper-pairing: Two electrons experience an effective attractive (!) interaction and form pairs. NB!! No more than pairs! (L. Cooper (1956); J. Bardeen, L. Cooper, R. J. Schrieffer (1957)). beamer-tu-log

Cooper-pairing Basic concepts Cooper-pairing All theories of superconductivity somehow involve the concept of Cooper-pairing: Two electrons experience an effective attractive (!) interaction and form pairs. NB!! No more than pairs! (L. Cooper (1956); J. Bardeen, L. Cooper, R. J. Schrieffer (1957)). beamer-tu-log

Generalized BCS theory Basic concepts Cooper-pairing Effective BCS Hamiltonian H = ε k c k,σ c k,σ k,σ + V k,k c }{{} k,σ c k, σ c k, σc k,σ k,k,σ Effective interaction k k V k,k c k, σc k,σ H is invariant if c k,σ c k,σ e iθ. Theory is U(1)-symmetric. Note: Global U(1)-invariance! k 0 U(1)-symmetry is broken! If V k,k = V g k g k, then k = 0 (T )g k beamer-tu-log

Basic concepts Cooper-pairing Normal metal in zero electric field No net motion of electrons Electrons (almost) do not see each other

Normal metal in electric field Basic concepts Cooper-pairing Forced net motion of electrons Electrons (almost) do not see each other beamer-tu-log

Basic concepts Cooper-pairing Superconductors in zero electric field Unforced net motion of electrons Electrons states are co-operatively highly organized

Outline Order parameter of SFs and SCs 1 Basic concepts Cooper-pairing 2 Order parameter of SFs and SCs 3 Lattice gauge theory Current loops Vortex loops

Order parameter of SFs and SCs Building a theory of Superconductivity A theory of wave-function of Cooper-pairs Ψ(r) = Ψ(r) e iθ(r) This theory needs to be able to somehow distinguish (by an order parameter OP) the high-temperature normal metallic state from the low-temperature superconducting state. An OP is the expectation value of some operator that effectively distinguishes an ordered state from a disordered state, separated by a phase transition. Two states separated by a phase transition cannot be analytically continued from one to the other. What is the order parameter of a superconductor? beamer-tu-log

Conventional phase transitions Order parameter of SFs and SCs Conventional phase transitions are well described by the Landau-Ginzburg-Wilson (LGW) paradigm L. D. Landau V. Ginzburg K. G. Wilson F = 1 2 ( M) 2 + r 2 M 2 + u 8 ( M 2 ) 2 r T T c r < 0 = M 0 beamer-tu-log

Conventional phase transitions Order parameter of SFs and SCs Conventional phase transitions are well described by the Landau-Ginzburg-Wilson (LGW) paradigm M M = 0 M = 0 T beamer-tu-log c

Order parameter of SFs and SCs Superconductor Superfluid

Order parameter of SFs and SCs Superconductor Superfluid Zero resistivity Zero viscosity beamer-tu-log

Order parameter of SFs and SCs Superconductor Superfluid Phase transition beamer-tu-log

Order parameter of SFs and SCs Superconductor Superfluid Order parameter beamer-tu-log

Order parameter of SFs and SCs Superconductor Superfluid Meissner effect

Order parameter of SFs and SCs Type I superconductor Type II superconductor Meissner effect Mixed phase

Vortices suppress Ψ Order parameter of SFs and SCs

Vortices suppress Ψ Order parameter of SFs and SCs

Vortices suppress Ψ Order parameter of SFs and SCs

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition Ginzburg-Landau model for superconductors { g H[ψ, A] = d d r 2 [ iea(r)]ψ(r) 2 + αt 2 ψ(r) 2 + u 4! ψ(r) 4 + 1 } 2 [ A(r)]2 beamer-tu-log

Effective models Order parameter of SFs and SCs Construct effective models Complex matter field: ψ(r) = ψ(r) e iθ(r) Neglect microscopic details Valid near the phase transition Gross-Pitaevskii model for superfluids [ 1 H[ψ] = d d r 2m ψ(r) 2 + V (r) ψ(r) 2 + U ] 0 2 ψ(r) 4

Order parameter of a superfluid Order parameter of SFs and SCs Gross-Pitaevskii model for superfluids [ 1 H[ψ] = d d r 2m ψ(r) 2 + V (r) ψ(r) 2 + U ] 0 2 ψ(r) 4 Z = e βf = DΨDΨ e βh O = 1 DΨDΨ O(Ψ, Ψ ) e βh Z Candidate OPs Ψ(r) 2 = Ψ(r) e iθ(r) 2 Ψ 2 e iθ(r) 2 (Local) Υ = 2 F θ 2 (Non local) beamer-tu-log

Order parameter of a superfluid Order parameter of SFs and SCs V ( Ψ ) = α ( ) T Tc 2T c Ψ 2 + u 4! Ψ 4 For the Higgs-mechanism to work at all, we need Ψ 0!

Order parameter of a superfluid Order parameter of SFs and SCs A. K. Nguyen and A. Sudbø, Phys. Rev B 60, 15307 (1999). beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor Ginzburg-Landau model for superconductors { g H[Ψ, A] = d d r 2 [ iea(r)]ψ(r) 2 + αt 2 Ψ(r) 2 + u 4! Ψ(r) 4 + 1 } 2 [ A(r)]2 O = 1 DΨDΨ O(Ψ, Ψ ) e βh Z Ψ(r) 2 = Ψ(r) e iθ(r) 2 Ψ 2 e iθ(r) 2 (Local) Υ = 2 F θ 2 (Non local) beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor This will not work! Ψ(r) = Ψ(r) e iθ(r) Ψ 0 e iθ(r) H[Ψ, A] = { d d g Ψ0 2 r ( θ ea(r)) 2 + 1 } 2 2 [ A(r)]2 Ψ(r) 2 = 0! Υ = 0! Elitzur s theorem: The expectation value of a gauge-invariant local operator can never acquire a non-zero expectation value in a gauge-theory. In a gauge-theory, the Goldstone modes are "eaten up" by the gauge-field Υ = 0. beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor { H[Ψ, A] = d d g Ψ0 2 r ( θ ea(r)) 2 + 1 } 2 2 [ A(r)]2 { = d d g Ψ0 2 r (( θ) 2 2e θ A(r) + e 2 A 2) 2 + 1 } 2 [ A(r)]2 = { d d g Ψ0 2 r ( θ) 2 2 + g Ψ 0 2 e 2 }{{ 2 } m 2 A 2 + 1 2 [ A(r)]2 } j A {}}{ g Ψ 0 2 θ A(r) beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor Consider in more detail the gauge-part of the theory (introducing Fourier-transformed fields) H A = m 2 A q A q + 1 2 q2 A q A q 1 2 (S qa q + S q A q ) = (m 2 + 1 2 q2 ) A q A q 1 }{{} 2 (S qa q + j q A q ) = D 0 (q) D 0 (q) {( A q 1 ) ( 2 D 1 0 (q)s q A q 1 ) 2 D 1 0 (q)s q 1 4 D 1 0 S q S q S q g Ψ 0 2 e 2 F( θ) 2 beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor Integrate out the shifted gauge fields Ãq = A q 1 2 D 1 0 (q)s q: H eff (Ψ) = m2 e 2 q 2 2m 2 + q 2 S q S q m 2 g Ψ 0 2 e 2 Define a momentum-dependent phase-stiffness Υ q : 2 Υ q = d 2 H eff ds q ds q = m2 e 2 q 2 2m 2 + q 2 Interested in long-distance physics q 0. beamer-tu-log

Order parameter of SFs and SCs Order parameter of a superconductor lim Υ m 2 q 2 q = lim q 0 q 0 e 2 2m 2 + q 2 = g Ψ 0 2 ; e = 0 2 lim Υ m 2 q 2 q = lim q 0 q 0 e 2 2m 2 + q 2 = 0; e 0

Order parameter of SFs and SCs Order parameter of a superconductor lim Υ m 2 q 2 q = lim q 0 q 0 e 2 2m 2 + q 2 = g Ψ 0 2 ; e = 0 2 lim Υ m 2 q 2 q = lim q 0 q 0 e 2 2m 2 + q 2 = 0; e 0 The superfluid density is NOT an order parameter for a superconductor! It IS an order parameter for a superfluid!

Outline Lattice gauge theory Current loops Vortex loops 1 Basic concepts Cooper-pairing 2 Order parameter of SFs and SCs 3 Lattice gauge theory Current loops Vortex loops

Lattice gauge theory Current loops Vortex loops Ginzburg-Landau lattice model ( ) Z = DA Dψ α α e S where the action is { S = β d 3 1 r ( iea(r)) ψ α (r) 2 2 α } + V ({ ψ α (r) }) + 1 2 ( A(r))2

Lattice gauge theory Current loops Vortex loops Ginzburg-Landau lattice model London-approximation Ψ(r) Ψ 0 e iθ(r) S = β r { µ,α cos ( µ θ r,α ea r,µ ) + 1 2 ( A r) 2 }

Current-loop formulation Lattice gauge theory Current loops Vortex loops e β cos γ = I b (β)e ibγ b= ( ) Z = DA Dθ α r,µ,α α b r,µ,α= I br,µ,α (β)e ibr,µ,α( µθr,α ear,µ) r e β ( Ar )2 2 P. N. Galteland and A. S., Phys. Rev B94, 054518 (2016). beamer-tu-log

Current-loop formulation Lattice gauge theory Current loops Vortex loops Z θ = r,α θ-integration gives: 2π 0 dθ r,α e iθr,α( µ µbr,µ,α) b r,α = 0 r, α The partition function is then given by Z J = D(A) {b} r,α e δ br,α,0 r,µ,α I br,µ,α (β) S {}} J [ { ie ] b r,α A r + J A + β 2 ( A r) 2 α beamer-tu-log r P. N. Galteland and A. S., Phys. Rev B94, Asle 054518 Sudbø (2016).

Current-loop formulation Lattice gauge theory Current loops Vortex loops Integrating out the A-field gives Z = δ br,α,0 I br,α,µ (β) }{{} {b} r,α r,µ,α r,r e e (b r,α,µ) 2 /2β e2 2β α,β br,α b r,β D(r r ) }{{} 1/ r r This is a theory of supercurrents b r,α, forming closed loops, interacting via the potential D(r r ) mediated by the gauge-field A, as well as contact interaction. P. N. Galteland and A. S., Phys. Rev B94, 054518 (2016). beamer-tu-log

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass A µ qa ν q = 1 δ 2 Z J Z 0 δj q,µ δj q,ν = 1 Z 0 {b,m} r,α ( δ2 S J δj qδj µ q ν J=0 δ br,α,0 r,µ,α I br,α,µ (β) δs J δs J δj q µ δjq ν ) e S J J=0

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass A q A q 1 q 2 + m 2 A Excitations Higgs mass A q A q = 1 2 β q 2 e2 β q 2 b q,α b q,β αβ ma 2 = lim 2 q 0 β A q A q beamer-tu-log

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass e 2 lim q 0 2β B q B q (1 C 2 (T ))q 2, T > T C. q 2 C 3 (T )q 2+η A, T = T C. q 2 C 4 (T )q 4, T < T C. m 2 A { 0, T TC. 1 C 4 (T ), T < T C. Fluctuating supercurrents B q α b q,α create a Higgs mass!

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Go back to vortices

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Z = D(A) δ br,α,0 I br,µ,α (β) {b} r,α r,µ,α e [ie α br,α Ar + β 2 ( Ar )2 ] Solve constraint b r,α = 0 r, α b r,α = K r,α r

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Z = D(A) δ br,α,0 I br,µ,α (β) {b} r,α r,µ,α e [ie α br,α Ar + β 2 ( Ar )2 ] r Use Poisson summation formula e i2πn h = δ( h K ) n= e i2πm h = K = m= K = δ(h K ) m = n ( m = 0!) beamer-tu-log

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Z = D(A) δ br,α,0 I br,µ,α (β) {b} r,α r,µ,α e [ie α br,α Ar + β 2 ( Ar )2 ] r Integrate out A. Z = D(A) D(h) {m} I hr,µ,α (β) r,µ,α e [i2πm h+ie α hr,α Ar + β 2 ( Ar )2 ] r beamer-tu-log

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Z = D(A) δ br,α,0 I br,µ,α (β) {b} r,α r,µ,α e [ie α br,α Ar + β 2 ( Ar )2 ] Z = D(h) I hr,α (β) e {m} r,α r,α r [ ] i2πm r,α h r,α+ e2 2 h2 r,α h is a massive (dual) gauge-field mediating interactions between the m s. Integrate out h. beamer-tu-log

Vortex-loop formulation Lattice gauge theory Current loops Vortex loops Z = D(A) δ br,α,0 I br,µ,α (β) {b} r,α r,µ,α e [ie α br,α Ar + β 2 ( Ar )2 ] r Z = δ mr,α,0 e 4π2 β r,r mr,α m r,α D(r r ) {m} r,α 1 D(q) = q 2 + e 2 β

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass A µ qa ν q 1 q 2 + m 2 A A q A q = 1 4π 2 e 2β2 β q 2 1 + + e 2 β q 2 ( q 2 m q,α m q,β + e 2 β) αβ }{{} Destroys Higgs mass ma 2 = lim 2 q 0 β A q A q beamer-tu-log

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass Vortex-loop blowout

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass Vortex-loop blowout

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass Vortex-loop blowout

Lattice gauge theory Current loops Vortex loops Gauge-field correlations and Higgs mass Vortex correlator G(q) = m q m q J. Hove and A. Sudbø, Phys. Rev. Lett. 84, 3426 (2000).

Lattice gauge theory Current loops Vortex loops Physical interpretation of the Higgs mass Gauge-field correlator A µ qa ν q 1 q 2 + m 2 A m A 1 λ λ: London penetration length. Anderson-Higgs mechanism yields the Meissner-effect, the defining property of a superconductor. Manifestation of a broken local (gauge) U(1)-invariance.

Lattice gauge theory Current loops Vortex loops 3D superconductors and superfluids are dual Vortices in a three-dimensional superconductor behave like supercurrents in a superfluid, and vice versa, with inverted temperature axes. 3D superfluids and superconductors are dual to each other. The field theory of one is the field theory of the topoligical defects (vortices) of the matter-field of the other. Order parameter for a superfluid is the superfluid density (non-local) or the condensate fraction (local). OP for a superconductor is the Higgs mass (non-local). Higgs mass is created by supercurrent-loop proliferation, and is destroyed by vortex-loop proliferation.