MSE 7025 Magnetic Materials (and Spintronics)

Similar documents
Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

Spin-torque nano-oscillators trends and challenging

MSE 7025 Magnetic Materials (and Spintronics)

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

MSE 7025 Magnetic Materials (and Spintronics)

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

MSE 7025 Magnetic Materials (and Spintronics)

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

An Overview of Spintronics in 2D Materials

Mesoscopic Spintronics

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

Wouldn t it be great if

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Physics in Quasi-2D Materials for Spintronics Applications

Optical studies of current-induced magnetization

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Spin Torque and Magnetic Tunnel Junctions

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Lecture I. Spin Orbitronics

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

introduction: what is spin-electronics?

Spatiotemporal magnetic imaging at the nanometer and picosecond scales

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

SUPPLEMENTARY INFORMATION

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Mesoscopic Spintronics

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Author : Fabrice BERNARD-GRANGER September 18 th, 2014

Gauge Concepts in Theoretical Applied Physics

Theory of Spin Diode Effect

Low-power non-volatile spintronic memory: STT-RAM and beyond

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70!

Systèmes Hybrides. Norman Birge Michigan State University

SUPPLEMENTARY INFORMATION

Resonance Measurement of Nonlocal Spin Torque in a Three-Terminal Magnetic Device

V High frequency magnetic measurements

arxiv:cond-mat/ v1 4 Oct 2002

Advanced Lab Course. Tunneling Magneto Resistance

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

0.002 ( ) R xy

Magnetization Dynamics in Spintronic Structures and Devices

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Spin Torque Oscillator from micromagnetic point of view

Switching Properties in Magnetic Tunnel Junctions with Interfacial Perpendicular Anisotropy: Micromagnetic Study

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

An Intrinsic Spin Orbit Torque Nano-Oscillator

Spin Transfer Torque Generated by the Topological Insulator Bi 2 Se 3. Cornell University, Ithaca, NY 14853

arxiv: v1 [cond-mat.mtrl-sci] 5 Oct 2018

Two-terminal spin orbit torque magnetoresistive random access memory

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer

Critical switching current density induced by spin Hall effect in magnetic structures with firstand second-order perpendicular magnetic anisotropy

Room temperature spin-orbit torque switching induced by a

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

MRAM: Device Basics and Emerging Technologies

Skyrmion based microwave detectors and harvesting

Micromagnetic simulations of current-induced magnetization switching in Co/ Cu/ Co nanopillars

Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices

Shape anisotropy revisited in single-digit

Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators

Spin Switch: Model built using Verilog-A Spintronics Library

SUPPLEMENTARY INFORMATION

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM)

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

High-frequency measurements of spin-valve films and devices invited

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Magnetic switching by spin torque from the spin Hall effect

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 11, NOVEMBER

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

01 Development of Hard Disk Drives

Page 1. A portion of this study was supported by NEDO.

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

SUPPLEMENTARY INFORMATION

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

This document is an author-formatted work. The definitive version for citation appears as:

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

An Overview of Spin-based Integrated Circuits

Recent developments in spintronic

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Damping of magnetization dynamics

Physics and applications (I)

Injection locking at zero field in two free layer spin-valves

Field dependence of magnetization reversal by spin transfer

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

Gilbert damping constant of ultrathin perpendicularly magnetized CoFeB/Pt-structures

10. Magnetoelectric Switching

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Transcription:

MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw

Course Outline Time Table Week Date Lecture 1 Feb 24 Introduction 2 March 2 Magnetic units and basic E&M 3 March 9 Magnetization: From classical to quantum 4 March 16 No class (APS March Meeting, Baltimore) 5 March 23 Category of magnetism 6 March 30 From atom to atoms: Interactions I (oxides) 7 April 6 From atom to atoms: Interactions II (metals) 8 April 13 Magnetic anisotropy 9 April 20 Mid-term exam 10 April 27 Domain and domain walls

Course Outline Time Table Week Date Lecture 11 May 4 Magnetization process (SW or Kondorsky) 12 May 11 Characterization: VSM, MOKE 13 May 18 Characterization: FMR 14 May 25 Transport measurements in materials I: Hall effect 15 June 1 Transport measurements in materials II: MR 16 June 8 MRAM: TMR and spin transfer torque 17 June 15 Spin transfer torque 18 June 22 Final exam

(modified from) From spin transfer torque, the spin Hall torque, to spin-orbit torque: An Experimentalist s Point of View April 11 th, 2016 NTU-IAM Seminar Talk Chi-Feng Pai

Spintronics: The beginning Giant magnetoresistance (GMR) ~3% Tunneling magnetoresistance (TMR) RAP R R ( AP ) P >100%

Spintronics: The beginning Spin valve Magnetic tunnel junction (MTJ) (top view) TMR~180% S. Yuasa et al., Nature Mater. 3 868 (2004)

Spintronics: The beginning HDD read-head sensors

Spin transfer torque 4s (itinerant)-3d (localized) s-d interaction J sˆ S r sd e - L. Berger, Phys. Rev. B 54, 9353 (1996) Ya. B. Bazaliy, B.A. Jones, and S.C. Zhang, Phys. Rev. B 57, R3213 (1998)

Spin transfer torque Landau-Lifshitz-Gilbert-Slonczewski (LLGS) eqn dm dm PI m Heff m ( m m) dt dt 2e M V 0 S L. Berger, Phys. Rev. B 54, 9353 (1996) J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) J. Z. Sun, Phys. Rev. B 62, 570 (2000)

Spin transfer torque Early experimental evidence E. B. Myers et.al. Science 285, 867 (1999)

Spin transfer torque Early experimental evidence E. B. Myers et.al. Science 285, 867 (1999)

Spin transfer torque Early experimental evidence J. A. Katine et.al. PRL 84, 3419 (2000)

Spin transfer torque Early experimental evidence J. A. Katine et.al. PRL 84, 3419 (2000) Current citation: ~1,700 times

Spin torque switching Current induced ST switching Spin valve MTJ 2e JC0 0M St( HC M eff / 2) ~ 10 10 A/cm P 6 7 2

Spin torque switching Current induced field vs. torque switching Field Spin-torque H JC0r J C0

Spin torque microwave generation Current induced torque dynamics Spin-torque nano-oscillator (STNO) A. M. Deac et.al. Nat. Phys. 4, 803 (2008)

Building blocks Spin torque devices

Building blocks Spin torque devices

STT-MRAM and spin logic But then again, what industry cares about is the possible application in non-volatile memory (NVM) Or maybe all spin-logic (ASL)? Nat. Nanotech. 5, 266 (2010)

Spin Hall effect induced STT Can we use a pure spin current to generate spin-torque instead of using a spin-polarized current? LLGS equation with a spin-polarized current dm dm PI m Heff m ( m m) dt dt e M V 2 0 S LLGS equation for the spin Hall effect induced spin current dm dm SH I m Heff m ( m m) dt dt 2e M V 0 S Replace spin-polarization by the spin Hall angle!

Spin Hall effect induced STT Can we use a pure spin current to generate spin-torque instead of using a spin-polarized current? Critical switching current in a (in-plane-magnetized) F/I/F MTJ 2e JC0 0M St( HC M eff / 2) P If we use the spin Hall effect 2e JC0 0M St( HC M eff / 2) SH Replace spin-polarization by the spin Hall angle!

The spin Hall effect (revisit) J S SH e The spin Hall angle ˆ J e - ˆ Spin-orbit interaction J / J SH s e J s J e e - e - e - M. I. Dyakonov and V. I. Perel, JETP 13 467 (1971) J. E. Hirsch, Phys. Rev. Lett. 83 1834 (1999)

The SHE in transition metals The spin Hall conductivity calculated for 4d 5d elements Tanaka, T. et al, Phys. Rev. B 77, 165117 (2008) ab initio calculation: θ SH (Ta)<0 and θ SH (Pt)>0 for highly resistive case, θ SH (Ta) can be large

Spin Torque-Ferromagnetic Resonance 2 f H0 H0 4 M eff Vmix IRF RRF dm dm m H m J ( m m) dt dt e M t eff e SH 2 0 S Spin current in plane torque τ ST symmetric peak Oersted field perpendicular torque τ H antisymmetric peak

Spin Torque-Ferromagnetic Resonance mˆ ˆ mˆ ˆm H + Vmix IRF RRF S J A HRF Je // S Spin current in plane torque τ ST symmetric peak Oersted field perpendicular torque τ H antisymmetric peak

V mix ( V) ST-FMR results of Ta and Pt S J S + + A J e 10 S J S A J e 4 2 0-2 f = 9 GHz CoFeB (4nm)/Ta (8nm) 0 40 80 120 160 B ext (mt) CoFeB/β-Ta V mix ( V) 0-10 f = 9 GHz CoFeB (3 nm)/ Pt (6 nm) -20 0 40 80 120 160 B ext (mt) CoFeB/Pt

V mix ( V) ST-FMR results of Ta and Pt + + S J S A J e 10 S J S A J e 4 2 0-2 f = 9 GHz CoFeB (4nm)/Ta (8nm) 0 40 80 120 160 B ext (mt) β-ta SH 0.15 V mix ( V) 0-10 f = 9 GHz CoFeB (3 nm)/ Pt (6 nm) -20 0 40 80 120 160 B ext (mt) Pt SH 0.07

Three-terminal devices

dv/di (k ) dv/di (k ) Three-terminal devices External field induced switching 100 100 DC current induced SHE-ST switching B ext = -3.5 mt 90 I DC =0 ma 80 70 60 dv/di (k ) 100 90 80 70 60-20 0 20 B ext (mt) -15-10 -5 0 5 10 15 20 B ext (mt) 80 60-1.5-1.0-0.5 0.0 0.5 1.0 1.5 I DC (ma)

dv/di (k ) Switching Current (ma) Three-terminal devices 1.5 1.0 0.5 0.0 I C AP to P I C P to AP 100 DC current induced SHE-ST switching B ext = -3.5 mt -0.5-1.0-1.5 1E-3 0.01 0.1 1 Ramp Rate (ma/s) 80 2e JC0 0M St( HC M eff / 2) SH 0.12 0.04 -Ta SH 60-1.5-1.0-0.5 0.0 0.5 1.0 1.5 I DC (ma)

5d transition metals Significant spin-orbit interactions 4d 5d 41 42 43 44 45 46 47 Nb Mo Tc Ru Rh Pd Ag 73 74 75 76 77 78 79 Ta W Re Os Ir Pt Au β-ta SH 0.15 (ST-FMR, ST-switchings) Liu et al., Science 336, 555 (2012) 0.068 0.005 Pt SH (ST-FMR, ST-switchings) Liu et al., Phys. Rev. Lett. 106 036601 (2011) Liu et al., Phys. Rev. Lett. 109 096602 (2012)

α-w Tungsten (W) BCC Conductive (20-40 μω cm) β-w A15 cubic Resistive (150-350 μω cm)

Intensity (counts) Sputtered W films Thickness-dependent resistivity and phase 300 250 4000 3500 W(6nm) W(8nm) XRD ( cm) 200 150 100 50 0 4 8 12 16 20 W thickness (nm) 3000 2500 2000 1500 1000 -W (200) -W (110) -W (210)/ -W (110) -W (211) Pai et al, Appl. Phys. Lett. 101, 122404 (2012) 30 35 40 45 50 2 (degree)

Sputtered W films Thickness-dependent resistivity and phase STEM imaging EELS composition survey W Fe Mg Hf Ta Chi-Feng Pai et al (unpublished data)

V mix ( V) ST-FMR from W(4-20nm)/Py(5nm) 40 0-40 -80-120 -160 Py(5nm)/W(4nm) Py(5nm)/W(10nm) 50 100 150 Chi-Feng Pai et al (unpublished data) B ext (mt) f 9 GHz

ST-FMR from W(4-20nm)/Py(5nm) SH 0.30 0.25 0.20 0.15 0.10 0.05 Chi-Feng Pai et al (unpublished data) SH-W ~ 0.3 4 8 12 16 20 W Thickness (nm)

Three-terminal devices 2e JC0 0M St( HC M eff / 2) SH Pai et al, Appl. Phys. Lett. 101, 122404 (2012) 0.33 0.06 -W SH

Three-terminal devices 3-terminal devices with different W thicknesses Thickness (nm) Resistivity (μω cm) Phase θ SH 5.2 260 β 0.33 6.2 80 α+β 0.18 15 21 α <0.07 In agreement with ST-FMR results The spin Hall angle is phase/resistivity dependent

The ever-growing spin Hall angle Reported spin Hall angles or spin Hall efficiencies

The ever-growing spin Hall angle Reported spin Hall angles or spin Hall efficiencies

The ever-growing spin Hall angle Reported spin Hall angles or spin Hall efficiencies

The ever-growing spin Hall angle What s next? Topological insulators? Bi 2 Se 3 effective spin Hall angle ~ 80% Liu et al, Phys. Rev. B 91, 235437 (2015)

The ever-growing spin Hall angle What s next? Topological insulators? Bi 2 Se 3 effective spin Hall angle ~ 200-350% Mellnik et al, Nature 511, 449 (2014)

The ever-growing spin Hall angle What s next? Topological insulators? (Bi 0.5 Sb 0.5 ) 2 Te 3 effective spin Hall angle ~ 14000%-42500%!!! Mellnik et al, Nature 511, 449 (2014)

The ever-growing spin Hall angle What s next? 2D materials? WTe 2 effective spin Hall angle?? MacNeill et al, arxiv (2016)