3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities

Similar documents
3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding

Hitoshi Hirose (1), and Kazuro Hirahara (2) Abstract. Introduction

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas

Heterogeneous Coulomb stress perturbation during earthquake cycles in a 3D rate-and-state fault model

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law

Slip-weakening models of the 2011 Tohoku-Oki earthquake and. constraints on stress drop and fracture energy

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data

Modeling Approaches That Reproduce a Range of Fault Slip Behaviors: What We Have and What We Need Nadia Lapusta. California Institute of Technology

Yuta Mitsui 1, Yoshihisa Iio 2, and Yukitoshi Fukahata 2. Earth Planets Space, 64, , 2012

A dynamic model of the frequency-dependent rupture process of the 2011 Tohoku-Oki earthquake

Toru Matsuzawa. Title/Affiliation. Specialized Field

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

Earthquakes and Tsunamis

Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution

LETTER Earth Planets Space, 63, , 2011

Expansion of aftershock areas caused by propagating post-seismic sliding

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes

Verification of the asperity model using seismogenic fault materials Abstract

Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan

Hiroaki; Hino, Ryota; Fujimoto, Hir. Citation GEOPHYSICAL RESEARCH LETTERS (2011) Right American Geophysical

On the nucleation of creep and the interaction between creep and seismic slip on rate- and state-dependent faults

Modeling short and long term slow slip events in the seismic cycles of large subduction earthquakes

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

I point out two possible paradoxical difficulties in the important target of the IODP in subduction zones, i.e.,

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data

Qualitative modeling of earthquakes and aseismic slip in the Tohoku-Oki area. Nadia Lapusta, Caltech Hiroyuki Noda, JAMSTEC

Scaling of characterized slip models for plate-boundary earthquakes

LETTER Earth Planets Space, 63, , 2011

Additional earthquakes parameters are put in the order of a clock-wise sense geographically, except Sumatra and Java, where they are from west to

Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with

Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

(Somerville, et al., 1999) 2 (, 2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Numerical study on multi-scaling earthquake rupture

Slip-Weakening Models of the 2011 Tohoku-Oki Earthquake and Constraints on Stress Drop and Fracture Energy

Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake

Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan

Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors

Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model

Megathrust Earthquakes

Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: comparison with observations and implications for fault friction

Migration process of very low-frequency events based on a chain-reaction model

Study megathrust creep to understand megathrust earthquakes

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake

Earthquake nucleation. Pablo Ampuero Caltech Seismolab

Tohoku University, Sendai , Japan 3 Seismological Laboratory, California Institute of Technology, Pasadena, California , USA

Source of the July 2006 West Java tsunami estimated from tide gauge records

The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as. Inferred from Tsunami Waveform Data

Linear potential theory for tsunami generation and propagation

Masataka; Matsuoka, Toshifumi. Citation EARTH PLANETS AND SPACE (2011), 63(

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law

Geometrical effects of a subducted seamount on stopping megathrust ruptures

PUBLICATIONS. Geophysical Research Letters

Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates

with tsunami simulation Author(s) Shishikura, Masanobu; Sawai, Y.; Na Symposium on Backwards Problem in G

Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia

Dynamic source modeling of the 1978 and 2005 Miyagi oki earthquakes: Interpretation of fracture energy

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes

Along strike variations in short term slow slip events in the southwest Japan subduction zone

Rapid magnitude determination from peak amplitudes at local stations

Interpretation of various slip modes on a plate boundary based on laboratory and numerical experiments

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA

Synthetic Seismicity Models of Multiple Interacting Faults

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0)

Influence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions

The Mechanics of Earthquakes and Faulting

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes

How pore fluid pressurization influences crack tip processes during dynamic rupture

The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates. By Tyler Lagasse

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model

A trial derivation of seismic plate coupling by focusing on the activity of shallow slow earthquakes

Afterslip and aftershocks in the rate-and-state friction law

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

Transcription:

GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049308, 2011 3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities B. Shibazaki, 1 T. Matsuzawa, 2 A. Tsutsumi, 3 K. Ujiie, 4 A. Hasegawa, 5 and Y. Ito 5 Received 14 August 2011; revised 7 October 2011; accepted 7 October 2011; published 9 November 2011. [1] We perform 3D quasi dynamic modeling of the cycle of a megathrust earthquake in the offshore Tohoku region, Japan, using a rate and state dependent friction law with two state variables that exhibits strong velocity weakening at high slip velocities. We set several asperities where velocity weakening occurs at low to intermediate slip velocities. Outside of the asperities, velocity strengthening occurs at low to intermediate slip velocities. At high slip velocities, strong velocity weakening with large displacements occurs both within and outside of the asperities. The rupture of asperities occurs at intervals of several tens of years, whereas megathrust events occur at much longer intervals (several hundred years). Megathrust slips occur even in regions where velocity strengthening occurs at low to intermediate slip velocities, but where velocity weakening is dominant at high slip velocities. The proposed model explains that megathrust earthquakes occur in the same subduction zone as large thrust earthquakes. Citation: Shibazaki, B., T. Matsuzawa, A. Tsutsumi, K. Ujiie, A. Hasegawa, and Y. Ito (2011), 3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities, Geophys. Res. Lett., 38,, doi:10.1029/2011gl049308. 1. Introduction [2] The 2011 off the Pacific Coast of Tohoku Earthquake (M w 9), Japan, occurred on 11 March 2011 in the subduction zone along the Japan Trench. The results of tsunami waveform inversion [Fujii et al., 2011] indicate that large slips occurred near the trench off Miyagi and off Fukushima, with a maximum slip amount of 48 m. Ito et al. [2011] estimated magnitude of the slip along the main fault to be 80 m near the trench. These results indicate that a significant stress drop occurred in the shallow part of the fault zone. Hasegawa et al. [2011] estimated the ratio of the mainshock stress drop to the background deviatoric stress Dt/t to be 0.9 0.95 by using the observed rotation of the maximum compressive stress axis. Their results suggest that the background 1 International Institute of Seismology and Earthquake Engineering, Building Research Institute, Tsukuba, Japan. 2 National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan. 3 Department of Geology and Mineralogy, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kyoto, Japan. 4 Doctoral Program in Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan. 5 Department of Geophysics, Tohoku University, Sendai, Japan. Copyright 2011 by the American Geophysical Union. 0094 8276/11/2011GL049308 deviatoric stress was completely released and that the frictional strength decreased significantly. [3] The region off Miyagi contains the asperities that generated earthquakes of M w 7.1 7.5 [Yamanaka and Kikuchi, 2004]. Satake et al. [2008] estimated the magnitude of the 869 Jogan earthquake (which caused a giant tsunami) to have been M 8.4, based on analyses of tsunami deposits in Miyagi. Therefore, in the region offshore from Miyagi, large thrust earthquakes occur at certain asperities with relatively short recurrence intervals, and megathrust earthquakes occur with longer recurrence intervals. These observations give rise to the questions of how large slips occur in the shallower part of the fault zone and how large thrust earthquakes (M w 7 7.5) and megathrust earthquakes (M w 9) can be generated at overlapping sites within the same subduction zone. [4] Hori and Miyazaki [2011] succeeded in modeling the generation cycle of M w 9 earthquakes in an area of repeating M w 7 7.5 earthquakes, assuming that the M w 9 source area is an area of large fracture energy and that the M w 7 7.5 asperities are areas of smaller fracture energy with a nucleation size smaller than the asperity size. Noda and Lapusta [2010] performed 3D simulations of earthquake sequences with evolving temperature and pore pressure due to shear heating and found that the region of more efficient thermal pressurization produces larger slip, resulting in large events with a large interseismic period. [5] Recent experimental studies using fault materials have reported that a dramatic drop in the friction coefficient occurs at high slip velocities [e.g., Di Toro et al., 2011]. Tsutsumi et al. [2011] examined the frictional properties of clay rich fault materials under water saturated conditions and found that velocity weakening or velocity strengthening occurs at intermediate slip velocities and that dramatic velocity weakening occurs at high slip velocities. These results suggest that large coseismic slips may occur in the shallow subduction zone, where subducted sediments are found. [6] In this study, we propose a rate and state dependent friction law with two state variables that exhibits weak velocity weakening or velocity strengthening with a small critical displacement at low intermediate velocities, but strong velocity weakening with a large critical displacement at high slip velocities. We use this friction law for quasidynamic 3D modeling of the cycle of a great Tohoku oki earthquake. 2. Constitutive Law With Two State Variables [7] In general, the value of the friction coefficient depends on the slip velocity and on state variables [e.g., Dieterich, 1981]. Recent experimental results suggest that strong velocity weakening occurs at high slip velocities for both 1of6

of a state variable with a large critical displacement at high slip velocities. Frictional resistance t can be written as ¼ ðv; Q 1 ; Q 2 Þ eff n ð1þ where v is the instantaneous sliding velocity; Q 1 and Q 2 are state variables that characterize the evolving state of the sliding surfaces; s eff n is the effective normal stress, defined as the difference between the lithostatic pressure and the pore fluid pressure P f. We represent the friction coefficient m as follows: ðv; Q 1 ; Q 2 Þ ¼ a ln v 0 v þ 1 þ b 1 ln v 1Q 1 þ 1 D c1 b 2 ln D c2 þ1 ð2þ v 2 Q 2 where m * is the base friction; a, b 1, and b 2 are empirical parameters; v 0 is the cut off velocity for the direct effects in the second term; v 1 is the higher cut off velocity for the evolution effect in the third term; v 2 is the lower cut off velocity for the evolution effect in the fourth term; D c1 and D c2 are critical displacements scaling the evolution of the state variables; and a is the empirical parameter that determines the effect of the cut off. In the Dieterich Ruina friction law, an evolution law for the state variable can be written as Figure 1. (a) Dependence of steady state friction on slip velocity for a case of velocity weakening (case I, dashed red line) and a case of velocity strengthening (case II, blue line) at low slip velocities. At high slip velocities, both cases exhibit velocity weakening. In case I, the values of a, b 1, and b 2 are 0.008, 0.012, and 0.024, respectively. The cutoff velocities v 1 and v 2 are 10 1 and 10 3 m/s, respectively, as indicated by dashed lines. a is taken to be 0.5. The critical displacements D c1 and D c2 are 0.04 and 0.48 m, respectively. In case II, the value of b 1 is 0.0, but the other values are the same as those in case I. (b) Dependence of the friction coefficient on fault slip for case I when slip velocity changes from low to high values. dq 1 dt dq 2 dt ¼ 1 Q 1v 1 D c1 ¼ 1 Q 2v D c2 [9] The steady state friction can be written as ss ¼ a ln v 0 v þ 1 þ b 1 ln v 1 v þ 1 b 2 ln v þ1 v 2 ð3þ ð4þ ð5þ cohesive and non cohesive fault materials [e.g., Di Toro et al., 2011]. The critical displacement observed at high slip velocities appears to be much greater than that observed at low slip velocities, suggesting that the friction law requires a state variable with a larger critical displacement in order to model large slip events. Tsutsumi et al. [2011] reported that the frictional behavior of clay rich fault materials under water saturated conditions shows velocityweakening or velocity strengthening behavior with an evolution of a state variable with a small critical displacement at intermediate slip velocities. For higher slip velocities, the friction coefficient shows a marked decrease with increasing slip velocity [Tsutsumi et al., 2011; Ujiie and Tsutsumi, 2010]. [8] To model the friction behavior observed by Tsutsumi et al. [2011], we formulate a rate and state dependent friction law with two state variables that exhibits velocity weakening or strengthening with an evolution of a state variable with a small critical displacement at low intermediate velocities, but strong velocity weakening with an evolution [10] The rate dependence of the steady state friction can be written as d ss ðþ v d ln v ¼ a b 1 b 2 1 þ v=v 0 1 þ v=v 1 1 þ ðv 2 =vþ ð6þ [11] The fourth term in equation (2) represents the effect of velocity weakening at high slip velocities. This term becomes effective when the slip velocity v is greater than the cut off velocity v 2. a is positive, and decreasing a results in decreasing effect of the cut off (see the auxiliary material). 1 [12] Figure 1 shows the frictional behavior of the proposed constitutive law. The constitutive law parameters are given empirically, based on experimental results (see the auxiliary material). In case I (red dashed line in Figure 1a), velocity weakening occurs at low slip velocities, and strong velocity weakening occurs at a high slip velocities. In case II (solid blue line in Figure 1a), velocity strengthening occurs 1 Auxiliary materials are available in the HTML. doi:10.1029/ 2011GL049308. 2of6

of the constitutive law described by equations (2) (4) because it is less computationally expensive. Figure 2. Configuration of the plate interface between the Pacific and Okhotsk plates. Dashed blue lines represent isodepth contour lines on the plate interface. The black line indicates the model region. Red lines indicate eight asperities that show velocity weakening at low to high slip velocities. In other regions, velocity strengthening occurs at low to intermediate slip velocities, but velocity weakening occurs at high slip velocities. Constitutive law parameters for the asperities and for other regions are given in Table 1. The acronyms used for asperities and corresponding events are also given in Table 1. at low slip velocities and strong velocity weakening occurs at high slip velocities. If a is small and less than 1, the effect of the cut off becomes small. In Figure 1a we take a to be 0.5 so that the corner slip velocity of steady state friction is smaller than the cut off velocity v 2. Figure 1b shows the dependence of friction on fault slip when slip velocity changes from low to high. In the case where slip velocity changes from 10 9 to 10 3 m/s, a decrease in friction with short displacement becomes dominant. When the slip velocity is changed from low values to 1 m/s, we find a significant stress drop with a large critical displacement. This behavior is similar to that indicated by the experimental results reported by Tsutsumi et al. [2011], whereby a significant stress drop occurs with a large displacement. In the present constitutive law, the displacement required for stress to drop becomes larger with decreasing initial value of the slip velocity. [13] In this model, we introduce a cut off velocity v 2 to the fourth term in equation (2). The state variable Q 2 evolves following equation (4) at low slip velocities without a cut off velocity. Another possible way to model a strong velocity weakening process that becomes effective when the slip velocity v is greater than the cut off velocity v 2 is to introduce a cut off velocity to the evolution of the state variable, such that dq 2 /dt =1 Q 2 (v + v 2 )/D c2 [Beeler, 2009]. In the present study, however, we adopt the form 3. Numerical Simulation 3.1. Model [14] We consider a quasi dynamic analysis that assumes a thrust fault in a 3D elastic half space. We use a curved plate boundary as shown in Figure 2. For simplicity, we set a free surface at the depth of the trench which is assumed to be 8 km below the sea surface. The curved plate interface is divided into triangular elements. For simplicity we assume the direction of plate convergence to be EW. The long term average slip velocity vector of the i th element has EW and vertical components and is parallel to the surface of a triangular element. For all elements, the magnitude of the long term average relative slip velocity is fixed at the rate of plate convergent, v pl = 8 cm/year. The shear stress t i on the i element is accumulated by the delay of the fault slip u is relative to the long term average slip v pl t, following a quasidynamic equation for tectonic loading [e.g., Rice, 1993] (see the auxiliary material). To solve the coupled equations of the constitutive law (1) (4) and the equation of tectonic loading (S1) in the auxiliary material, we use the fifth order Runge Kutta method with adaptive step size control [Press et al., 1992]. [15] We set eight different asperities, as shown in Figure 2, corresponding to the rupture areas of past earthquakes obtained by Yamanaka and Kikuchi [2003, 2004], Murotani [2003], and Central Disaster Prevention Council (http:// www.bousai.go.jp/jishin/nihonkaikou/houkoku/sankou1. pdf) (see the auxiliary material). In these asperities, velocity weakening occurs at low to intermediate slip velocities. Outside of the asperities, however, velocity strengthening occurs at low slip velocities but velocity weakening occurs at high slip velocities. The values of the constitutive law parameters a, b 1, b 2, D c1 and D c2 are given in Table 1. a b 1 is negative in the eight asperities and positive outside of the asperities, whereas a b 1 b 2 is negative in all regions shallower than 50 km. Hasegawa et al. [2011] estimated the absolute shear stress of the source region of the Tohoku oki earthquake to be around 21 22 MPa. Therefore, the effective normal stress is estimated to be 35 36.7 MPa when friction coefficient is 0.6. In the present study the value of s eff n increases from 0 to 36.6 MPa with increasing depth from 8 km (the depth of the trench) to 13 km and then gradually increases to 39.74 MPa at a depth of 18 km. The values of the cut off velocities v 0, v 1 and v 2 are 1.0, 0.1 and 0.001 m/s, respectively. a is taken to be 0.5. The minimum nucleation length scale L b = GD c /bs eff n [Rubin and Ampuero, 2005] in the model is calculated to be 3.1 km for b = b 1 and D c = D c1, and 18.9 km for b = b 2 and D c = D c2. In the present calculation, the largest node interval is 2.2 km, which is smaller than the nucleation length scale. The values of a, b 1, and D c1 are determined empirically to reproduce M 7.5 earthquakes with recurrence intervals of several tens of years and a fault slip of 2 3 m. The values of b 2 and D c2 are determined to reproduce megathurst earthquakes with a recurrence interval of 1000 years. 3.2. Results [16] Figure 3 shows temporal changes in slip at points P1 7 defined in Figure 2 (see the auxiliary material for 3of6

Table 1. Constitutive Law Parameters for Each Region Region Event a b 1 b 2 D c1 (m) D c2 (m) SRK 1611 M 8.1, 1896 M 8.5 a 0.008 0.012 0.024 0.10 1.2 MYG1 1981 M7.1 0.0064 0.0096 0.0192 0.04 0.48 MYG2 1978 M7.4 0.0064 0.0096 0.0192 0.04 0.48 MYG3 1936 M7.4 0.0064 0.0096 0.0192 0.04 0.48 FKS1 2003 M6.8 0.0064 0.0096 0.0192 0.04 0.48 FKS2 1938 M7.3 0.0064 0.0096 0.0192 0.04 0.48 FKS3 1938 M7.5 0.0064 0.0096 0.0192 0.04 0.48 IBRK 1938 M7.0 0.0064 0.0096 0.0192 0.04 0.48 Outside of asperities Depth 50 km 0.0064 0.0 0.0144 0.48 Outside of asperities Depth 50 km 0.0064 0.0256 b 0.0 0.0 a A southern part of the source area overlaps with the asperity SRK. b a changes from 0.0064 to 0.0256 linearly with depth. temporal changes in slip at points PS1 2). Megathrust slips occur at elapsed times of 1156.01 and 2042.66 years. At point P1, within a large asperity near the trench (SRK), the fault is locked during the interval between megathrust events. At the time of megathrust events, very large slips of 70 m occur at this point. P2 is located in the northern part of the SRK asperity. Two large slips of 5.1 and 13.5 m occur at 1700.42 and 1884.21 years, respectively, during the period between megathrust events. P3 and P4 are located in the Miyagi asperities, P5 and P6 in the Fukushima asperity, and P7 in the Ibaraki asperity. No significant slip events occur within the 150 year period after megathrust events; however, after 150 years has passed, slips of 2 4 m occur at intervals of several tens of years. [17] Figure 4 shows the slip velocity distribution for typical events on the curved plate interface. Many events with magnitudes of around M w 7.5 (Figures 4h 4k) occur at the Ibaraki Fukushima, and Miyagi asperities. These events do not grow to larger events because velocity strengthening occurs at low to intermediate velocities in the surrounding region. At 1700.42 and 1884.21 years, large events with M w 7.9 and 8.3 (Figures 4b 4g) occur in the northern part of the SRK asperity. These events do not extend to the entire region of the SRK asperity because the fault is strongly locked near the center of the SRK asperity (arrow in Figure 4). At 2042.66 years, a megathrust event (M w 9.1) is initiated near the strongly locked portion of the SRK asperity (Figures 4m 4q). The slip and slip velocity become sufficiently high that velocity weakening occurs at high slip velocities with large displacement. The rupture propagates to the Miyagi asperities and then propagates to the Fukushima and Ibaraki asperities. During this event, coseismic fault slips occur in the regions outside of the asperities because the frictional property changes from velocity strengthening at low to intermediate velocities to velocity weakening at high slip velocities. During this event, large coseismic slip of 70m occurs in the strongly locked region near the trench (Figure 5). [18] In the present model, the occurrence of megathrust events is controlled by the rupture of a strongly locked portion of the SRK asperity. Fault slips are largest around this strongly locked portion because a b 1 b 2 is large and is located near the center of the asperity and the free surface. Furthermore, small asperities (MYG1 and MYG2) exist at the deeper extension of the strongly locked portion. The recurrence intervals and sizes of megathrust events are controlled by the value of a b 1 b 2 and by the size of the SRK asperity. In the present simulation, we use larger values of a, b 1, b 2, and D c for the SRK asperity to reproduce longer recurrence intervals. By taking a larger value of D c, the duration of shallow slip becomes longer. In the present case, megathrust slip propagates throughout almost the entire region. The state after a megathrust slip is almost the same in each cycle; consequently, the system evolves in a similar manner in each cycle. The site of rupture initiation of megathrust events changes in each cycle, but is located near the edge of the SRK asperity, from where the rupture propagates to the strongly locked portion. 4. Conclusion [19] We performed quasi dynamic 3D modeling of earthquake cycles by considering eight asperities in the Figure 3. Temporal changes in fault slip at points (a) P1 P4 and (b) P5 P7 (see Figure 2 for location). 4of6

Figure 4. (a) Slip velocity distribution on the curved plate interface at certain time steps along with the spatial scale and the scale of slip velocity. Slip velocity distribution at each time step (year) for the following ruptures: (b c) M w 7.9 Sanriku event and (d g) M w 8.3 Sanriku event at the SRK asperity, (h) M w 7.5 Ibaraki event at the IBRK asperity, (i) M w 7.5 Fukushima event at the FKS2 asperity, (j) M w 7.6 Fukushima event at the FKS3 asperity, (k) an M w 7.6 Miyagi event at the MYG2 and MYG3 asperities, (l) pre event of the M w 9.1 event, and (m q) the M w 9.1 event. The number shown in each panel represents the elapsed time in years. 5of6

[21] Acknowledgments. This research was supported by MEXT KAKENHI (21107007). We are grateful to two anonymous reviewers for their critical comments and to T. Shimamoto and Y. Fujii for valuable discussions. For this study, we have used the computer systems of the Earthquake Information Center of the Earthquake Research Institute, the University of Tokyo. [22] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper. Figure 5. Slip distribution on the curved plate interface for the M w 9.1 event. region offshore from Miyagi, Fukushima, and Ibaraki in Japan, where velocity weakening occurs at low to intermediate slip velocities. Outside of the asperities, velocity strengthening occurs at low to intermediate slip velocities. At high slip velocities, strong velocity weakening with large displacements occurs both within and outside of the asperities. The modeling results show that ruptures with slips of 2 4 m occur at intervals of several tens of years at the Miyagi, Fukushima and Ibaraki asperities, located close to land. Ruptures of these asperities do not extend to the surrounding region, because of velocity strengthening at low to intermediate slip velocities. Megathrust slips initiated at the Sanriku asperity and propagated to other asperities. During megathrust events, the slip and slip velocity become very large, meaning that in the surrounding region the frictional property changes from velocity strengthening at low slip velocities to velocity weakening at high slip velocities. The results explain why large thrust earthquakes (slips of 2 4 m) and megathrust earthquakes (maximum slips of 70 m) occur within the same subduction zone. [20] The 1611 (M8.1) and 1896 (M8.5) tsunamigenic earthquakes occurred in the Sanriku region near the Japan trench. The model produced M7.9 and M8.3 Sanriku events at the northern part of the Sanriku asperity, although these events show a relatively high slip velocity. By changing the constitutive law parameters (e.g., by increasing the critical displacement), it may be possible to reproduce the Sanriku slow Tsunami earthquakes. This study proposed one possible form of a friction law that shows strong velocity weakening at high slip velocities. In a future study, it would be important to investigate the frictional properties at high slip velocities, based on friction experiments using rocks with the same properties as those within the northeastern Japan subduction zone. References Beeler, N. (2009), Constructing constitutive relationships for seismic and aseismic fault slip, Pure Appl. Geophys., 166, 1775 1798, doi:10.1007/s00024-009-0523-0. Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto (2011), Fault lubrication during earthquakes, Nature, 471, 494 498, doi:10.1038/nature09838. Dieterich, J. H. (1981), Constitutive properties of rock with simulated gouge, in Mechanical Behavior of Crustal Rocks, Geophys. Monogr. Ser., vol. 24, edited by N.L. Carter et al., pp. 108 120, AGU, Washington, D. C. Fujii, Y., K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa (2011), Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake, Earth Planets Space, 63, 815 820, doi:10.5047/eps.2011.06.010. Hasegawa, A., K. Yoshida, and T. Okada (2011), Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 703 707, doi:10.5047/eps.2011.06.007. Hori, T., and S. Miyazaki (2011), A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 and 8 earthquakes surrounded by aseismic sliding, Earth Planets Space, 63, 773 777, doi:10.5047/eps.2011.06.022. Ito, Y., T. Tsuji, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, H. Tsushima, R. Hino, and H. Fujimoto (2011), Frontal wedge deformation near the source region of the 2011 Tohoku Oki earthquake, Geophys. Res. Lett., 38, L00G05, doi:10.1029/2011gl048355. Murotani, S. (2003), Rupture processes of large Fukushima oki earthquakes in 1938, Master s thesis, Univ. of Tokyo, Tokyo. Noda, H., and N. Lapusta (2010), Three dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: Effect of heterogeneous hydraulic diffusivity, J. Geophys. Res., 115, B12314, doi:10.1029/2010jb007780. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes in Fortran: the Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York. Rice, J. R. (1993), Spatio temporal Complexity of Slip on a Fault, J. Geophys. Res., 98(B6), 9885 9907, doi:10.1029/93jb00191. Rubin, A. M., and J. P. Ampuero (2005), Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res., 110, B11312, doi:10.1029/ 2005JB003686. Satake, K., Y. Namegaya, and S. Yamamoto (2008), Numerical simulation of the AD 869 Jogan tsunami in Ishinomaki and Sendai plains, Annu. Rep. on Active Fault and Paleoearthquake Res., Geol. Surv. of Jpn., Tokyo. Tsutsumi, A., O. Fabbri, A. M. Karpoff, K. Ujiie, and A. Tsujimoto (2011), Friction velocity dependence of clay rich fault material along a megasplay fault in the Nankai subduction zone at intermediate to high velocities, Geophys. Res. Lett., 38, L19301, doi:10.1029/2011gl049314. Ujiie, K., and A. Tsutsumi (2010), High velocity frictional properties of clay rich fault gouge in a megasplay fault zone, Nankai subduction zone, Geophys. Res. Lett., 37, L24310, doi:10.1029/2010gl046002. Yamanaka, Y., and M. Kikuchi (2003), Fukushima oki earthquake (Mj = 6.8) (in Japanese), Seismol. Notes 135, Earthquake Inf. Cent., Tokyo. (Available at http://www.eri.u tokyo.ac.jp/sanchu/seismo_note/eic_ News/031031.html.) Yamanaka, Y., and M. Kikuchi (2004), Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307, doi:10.1029/2003jb002683. A. Hasegawa and Y. Ito, Department of Geophysics, Tohoku University, Sendai, 981 9578, Japan. T. Matsuzawa, National Research Institute for Earth Science and Disaster Prevention, 3 1 Tennodai, Tsukuba, 305 0006, Japan. B. Shibazaki, International Institute of Seismology and Earthquake Engineering, Building Research Institute, 1 Tatehara, Tsukuba 305 0802, Japan. A. Tsutsumi, Department of Geology and Mineralogy, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kyoto, 606 8502, Japan. K. Ujiie, Doctoral Program in Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 0006, Japan. 6of6