Outline. Liouville s theorem Canonical coordinates Hamiltonian Symplecticity Symplectic integration Symplectification algorithm

Similar documents
Nonlinear Single-Particle Dynamics in High Energy Accelerators

The Accelerator Hamiltonian in a Straight Coordinate System

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 9

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit

Lund/Barnard USPAS Problem 1

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Transverse Dynamics II

Physics 598ACC Accelerators: Theory and Applications

Introduction to Group Theory Note 1

Hamilton-Jacobi theory

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

We used this in Eq without explaining it. Where does it come from? We know that the derivative of a scalar is a covariant vector, df

pp physics, RWTH, WS 2003/04, T.Hebbeker

On A General Formula of Fourth Order Runge-Kutta Method

Space Charge Mi-ga-on

BEAM INSTABILITIES IN LINEAR MACHINES 1.

Beam-Beam Stability in Electron-Positron Storage Rings

Poisson Brackets and Lie Operators

The kinetic equation (Lecture 11)

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee)

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Low Emittance Machines

Non-linear dynamics! in particle accelerators!

Maxwell s equations. based on S-54. electric field charge density. current density

Math 115 ( ) Yum-Tong Siu 1. Canonical Transformation. Recall that the canonical equations (or Hamiltonian equations) = H

The oerators a and a obey the commutation relation Proof: [a a ] = (7) aa ; a a = ((q~ i~)(q~ ; i~) ; ( q~ ; i~)(q~ i~)) = i ( ~q~ ; q~~) = (8) As a s

Space Charge in Linear Machines

Accelerator Physics Final Exam pts.

Part III. Interaction with Single Electrons - Plane Wave Orbits

Practical Lattice Design

Introduction to Longitudinal Beam Dynamics

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 2

Two dimensional manifolds

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities

12. Acceleration and Normalized Emittance *

we get our formula for the saddle-point integral (5.294) h(w) e xf(w). (5.301) xf 00 (w) (w j )

Simplifications to Conservation Equations

Introduction to Transverse Beam Dynamics

06.lec Acceleration and Normalized Emittance *

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

References: 1. Cohen Tannoudji Chapter 5 2. Quantum Chemistry Chapter 3

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Linear beam dynamics and radiation damping

Math 240 Calculus III

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

WRT in 2D: Poisson Example

Phase transition. Asaf Pe er Background

Lecture 5. Alexey Boyarsky. October 21, Legendre transformation and the Hamilton equations of motion

4. Statistical description of particle beams

FE FORMULATIONS FOR PLASTICITY

Lecture 5: Moment generating functions

16.2. Line Integrals

Beam Dynamics with Space- Charge

Statistical Mechanics Homework 7

The Quark-Parton Model

Electromagnetism HW 1 math review

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Problem set 6 for Quantum Field Theory course

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Lecture 3 January 16

RF LINACS. Alessandra Lombardi BE/ ABP CERN

Lecture 16 March 29, 2010

In this appendix we show that the multidimensional Lyapunov exponents and

Chiral kinetic theory

2.9 Dirac Notation Vectors ji that are orthonormal hk ji = k,j span a vector space and express the identity operator I of the space as (1.

ε i (E j )=δj i = 0, if i j, form a basis for V, called the dual basis to (E i ). Therefore, dim V =dim V.

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise

The coefficients of the characteristic polynomial in terms of the eigenvalues and the elements of an n n matrix

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

송석호 ( 물리학과 )

Review of Probability Theory II

M3/4A16. GEOMETRICAL MECHANICS, Part 1

Radiative Processes in Astrophysics

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook.

The Particle-Field Hamiltonian

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

ENGI Gradient, Divergence, Curl Page 5.01

MPRI Cours I. Motivations. Lecture VI: continued fractions and applications. II. Continued fractions

Equations of motion in an accelerator (Lecture 7)

Lecture 10: Hypercontractivity

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

Supporting Information for Relativistic effects in Photon-Induced Near Field Electron Microscopy

Solutions 4: Free Quantum Field Theory

Physics 742 Graduate Quantum Mechanics 2 Midterm Exam, Spring [15 points] A spinless particle in three dimensions has potential 2 2 2

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

LECTURE 3 BASIC QUANTUM THEORY

Envelope and Matrix Codes (TRACE 3-D & TRANSPORT Introduction)

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations

Lecture 8, the outline

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

Physics 582, Problem Set 6 Solutions

Low Emittance Machines

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal.

Some Special Types of First-Order PDEs Solving Cauchy s problem for nonlinear PDEs. MA 201: Partial Differential Equations Lecture - 6

Transcription:

Outline Liouville s theorem Canonical coordinates Hamiltonian Symlecticity Symlectic integration Symlectification algorithm USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 1 --

Liouville s Theorem In the local region of a article, the article density in hase sace is constant rovided that the articles move in a general field consisting of magnetic fields and of fields whose forces are indeendent of velocity. Density function = number of articles er unit volume of six-dimensional hase sace Particle current f ( r,, t) J6 ( fr, f ) ( f, ff) Continuity equation = reservation of the number of articles f / t 6 J 6 6J6 ( f) ( f F) ( f) f ( ) ( f) F f( F) F [ gr ( ) q Br ( )] q ( B ) qb ( ) q ( B ) y x 4 4 4 c mc x c mc y c mc z USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- --

Continuity equation becomes Theorem roved. Liouville s Theorem 6J6 ( f ) ( f ) F f / t( f) r ( f) df / dt Limitations and excetions Linear and non-linear mismatch effective emittance growth Velocity-deendent Coulomb interaction between individual articles: IBS, Touschek Dissiative mechanisms Radiation, radiation daming Charge-exchange inection Electron cooling Stochastic cooling An immediate consequence of the theorem T T Y T( X), T () X Y () X M X 6 6 6 i, i i 1X 1X 1 Since the determinant of the Jacobian is a ratio of volumes det M 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 3 --

Canonical Momentum and Vector Potential Conservative force Lorentz force F F d / dt q( E B) can be velocity deendent and is not always conservative. F d/ dt q[ E( B)] qb / tq[( B ) ( ) B( B) ( ) B] qb/ t q( ) B qdb / dt d( qa)/ dt d d d ( qa) ( qa) dt dt dt Canonical momentum and conservative canonical force P qa, F dp/ dt can USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 4 --

Relativistic Hamiltonian of a free article Hamiltonian in an electromagnetic field Hamilton s equations Frenet-Serret curvilinear coordinate system Hamiltonian becomes Hamiltonian H c m c 4 B A, E A/ t 4 H ( PqA) c m c q dp / dt H, dx / dt PH ˆ ˆ ˆ ˆ r x dl dr r rd dy y dx x ds sˆdy yˆ dx xˆdy yˆ(1 ) ds sˆ 4 s H m c c x y 1 x / H Ps qas c m c ( Px qax) ( Py qay) q 1 x / USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 5 --

s-hamiltonian Poincaré-Cartan invariant under a canonical variable transformation Hamiltonian with the longitudinal coordinate as the indeendent variable Curl in Frenet-Serret coordinates For static transverse magnetic fields Pdr Hdt inv PdxPdyPdsHdt PdxPdy( H) dt( P) ds x y s x y s PdxPdy( U) dth ds x y s H P( x, P, y, P, t, U; s) s s x y x U q s 1 ( x x) ( y y) qa m c P qa P qa c 1 A A s y 1 Ax A A s y Ax A xˆ yˆ sˆ 1 x/ y s 1 x/ s x x y B x, A A x 1 A s 1, B A s y 1 x/ y 1 x/ x y USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 6 --

Hamiltonian in Standard Canonical Coordinates For static transverse magnetic fields Canonical change of longitudinal coordinates, A A x y H s qas x U mc x y 1 c qas x U mc 1 x y c H( x, x, y, y, t, U / ; s) / dx/ ds x, / dy/ ds y x y ( t, U / ) ( z s t, / ) H ( x, x, y, y, z, ; s) H( x, x, y, y, t, U / ; s) F ( t, ; s)/ s z F /, U / F / t USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 7 --

Hamiltonian in Standard Canonical Coordinates U F tf(, s) U U U c 1 (1 ) U Hamiltonian in the new canonical longitudinal coordinates c F (1 ) tsf( s) c s s F (1 ) t s qas x H 1 x y qa x F s s 1 1 x y 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 8 --

Hamiltonian in Standard Canonical Coordinates Exansion of the Hamiltonian keeing the lower-order terms qas x 1 1 H 1 1 [ ( x y ) ] [4 ] 1 8 qas x 1 1 1 ( x y ) 1 qas 1 ( x x x y ) USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 9 --

Symlectic Transformations and Matrices Hamilton s equations H H( xp,, yp,, t, Us ; ), X( xp,, yp,, t, U) x y x y dxi H dpi H, ds P ds x dx ds i i 6 1 S i H X 1 1 1 S 1 1 1 i USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 1 --

Symlectic Transformations and Matrices Canonical coordinate transformation in assing through a beam line X X ( X ) 1 1 dx dx dx 1i X M ds X ds ds 1i i dx 1i H H X 1 T k H Si Si Si M ds X1, k 1, k k X k X X k T dx M Skl dx ds 1 l k dx dx 1 T l M S M 1i Si kl i k, k ds ds l ds M SM T 1 T ( ) S, S M S M Definition of a symlectic matrix. USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 11 --

Symlectic Integration Exanding the equation of motion in the neighborhood of the reference traectory ˆ () X s 6 6 6 d ˆ H ˆ H ( ) ( ) ( ˆ H X ) ( ˆ i Xi Si X X Si X X) Xk ds 1 X 1 X k1x X k 6 6 6 6 dxi H S ( ˆ i X) Xk SiCkXk ds 1 k1 X X k 1 k1 C k In matrix notation If C is constant dx SC X ds SCs X () s e X() M() s e SCs If C is a function of s we aroximate it in a iecewise constant fasion as M() s e e e e SC( sds) ds SC( ds) ds SC( ds) ds SC() ds USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 1 --

Symlectic Matrices Since any nn symlectic matrix can be exressed in terms of a symmetric matrix it has the same number of degrees of freedom ( n) E.g. a 44 symlectic matrix has 1 indeendent arameters. Choosing a basis for 44 symmetric matrices c n n(n1) n 1 1 1 1 :,,,, 1 1 1 1 1 1 1 1 1,,,, 1 1 1 1, 1 1 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 13 --

Symlectic Matrices Any 44 symmetric matrix can be written in the form Any 44 symlectic matrix can be written as C 1 c 1 1 1 exscex Sc ex G 1 1 G USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 14 --

Maniulations with Exonentials The Baker-Cambell-Hausdorff (BCH) formula X Y Z e e e X Y 1 1 1 Z log( e e ) X Y [ X, Y] ([ X, X, Y] [ Y, Y, X]) [ X, Y, Y, X] 1 4 [ X, XY, ] [ X,[ XY, ]], [ XYYX,,, ] [ X,[ Y,[ YX, ]]] The Zassenhaus formula U to nd order in h 3 4 e e e e e e ( AB) h Ah Bh [ ABh, ] / ([ BAB,, ] [ A, AB, ]) h / 6 O( h ) e e e e O( h ) ( AB) h Ah/ Bh Ah/ 3 1 1 SCh M( h) e ex Gh ex1g1h Gh 1 1 ex / ex e Gh G h x Gh/ 1 1 1 1 half-ste drift half-ste drift thin element kick USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 15 --

Symlectic Integrator The matrix reresenting a canonical coordinate transformation over a small ste during which the fields can be considered constant can be reresented as a thin kick sandwiched between two drifts with all coefficients determined by the Hamiltonian G M 1 1 1 ( h) ex 1 1 / ex ex 1 1 / half-ste drift half-ste drift thin element kick Gh Gh Gh 1 1 1 1 Sc 1 1 1 1 1 1h / 1 3 ex( 1Gh 1 / ) O( h ) 1 1h / 1 This is the basis of symlectic drift-kick codes, kicks can be non-linear, e.g. for sextuoles, octuoles, etc. USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 16 --

Time-Symmetric Integrators Aly the BCH formula to the time symmetric roduct Xh Y 1 1 1 e e e e ex( X Y [ XY, ] ([ X, XY, ] [ YY,, X]) [ XYY,,, X]) e 1 4 1 1 3 1 4 ex{( X Y) h [ X, Yh ] ([ X, XY, ] [ YYX,, ]) h [ XYYXh,,, ] Xh 1 4 1 1 3 1 4 [ XYXh, ] [[ XY, ], Xh ] ([[ X, XY, ], X] [ [ YYX,, ], X]) h 4 4 1 ([ X Y, X Y, 3 1 4 5 X] [ X, X, X Y]) h [ X, X, X, Y] h Oh ( )} 1 4 1 3 5 ex{( X Y ) h ([ YY,, X ] [ X, XY, ]) h O( h )} 6 W h Xh Xh USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 17 --

If an integrator is time reversible then Alying the BCH formula gives Time-Symmetric Integrators Ih ( ) e Reeating we find by induction that all even owers vanish log( Ih ( )) i.e. must be an odd function of h. 3 1 3 ghg h gh IhI ( ) ( h) 1 3 3 3 1 3 1 3 IhIhe e e gh g h gh gh g h gh gh Oh ( ) ( ) ( ) 1 g g USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 18 --

Higher-Order Integrators Higher-order integrators may be constructed from the nd -order integration function 4 th -order integrator may be constructed using time-symmetric roduct of nd -order integrators To 4 th -order this requires Ah/ Bh Ah/ gh 1 gh 3 I ( h) e e e e I ( h) I ( ah) I ( bh) I ( ah) 4 3 3 3 3 5 1 3 ( ) a b g h a b g h A B h O h I4 h e e ab 1 3 3 a b ( ) ( ) ( ) ( ) 1/3 1 a, b 1/3 1/3 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 19 --

Symlectification Algorithm A symlectic matrix M may be written in the form if and only if W is a symmetric matrix. If W is symmetric If M is symlectic and M ( I SW)( I SW) M SM ( I W S ) ( I W S ) S( I SW)( I SW) T T T 1 T T 1 ( I WS) ( I WS) S( I SW )( I SW ) ( I WS) ( I WS)( I WS) S( I SW ) 1 1 1 1 ( I WS) ( I WS)( I WS) S( I SW ) ( I WS) ( I WS) S( I SW )( I SW ) S 1 1 1 1 T W PQ, W P Q M SM S ( I W S ) ( I W S ) S( I SW)( I SW) T T T 1 T T 1 ( I W S ) ( S PQPQW SW)( I SW) T T 1 T 1 ( I W S ) [( S W )( I SW ) 4 Q]( I SW ) T T 1 T 1 S I W S Q I SW Q T T 1 1 4( ) ( ) T 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- --

Symlectification Algorithm Symmetric matrix from a symlectic matrix For an almost symlectic matrix calculate the almost symmetric matrix Symmetrize the almost symmetric matrix W S I M I M 1 ( ) ( ) W S( I M ) ( I M ) 1 T 1 ( W W )/ Obtain a symlectic aroximation of the original matrix W M ( I SW )( I SW ) 1 1 1 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 1 --

Sector diole magnet: Hessian matrix of the Hamiltonian Examle: Sector Diole Magnet B yˆ, for s L B, elsewhere As x s 1 By A B x 1 x/ x x x 1 x x x 1 x H ( x y ) ( x y ) 1/ 1 1 1 1/ c1 ( 3 4), SC H C c c X ix 1 1 cos( s/ ) sin( s/ ) n SCs ( SCs) sin( s/ ) / cos( s/ ) M() s e n n! 1 s 1 USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- --