THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE

Similar documents
SEASONAL FLOW REGIME ON THE RIVERS FROM CĂLIMANI MOUNTAINS

THE MAXIMUM QUANTITIES OF RAIN-FALL IN 24 HOURS IN THE CRIŞUL REPEDE HYDROGRAPHIC AREA

PARTICULIARITIES OF FLOODS ON RIVERS IN THE TRANSYLVANIAN SUBCARPATHIANS AND THE NEIGHBOURING

VARIABILITY OF PRECIPITATION AND LIQUID FLOW IN THE DESNĂŢUI HYDROGRAPHICAL BASIN

RELATIVE AIR MOISTURE IN CRISUL REPEDE DRAINAGE AREA

Utility of Graphic and Analytical Representation of Simple Correlation, Linear and Nonlinear in Hydro-climatic Data Analysis

SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

EXTREME TEMPERATURES IN THE CITY OF SĂCUENI BIHOR

FLOOD WAVES PARAMETERS A COMPARATIVE ANALYSIS BETWEEN GALBENU AND TELEORMAN RIVERS

Hydrological risk phenomena caused by rainfalls in the north-western part of Romania

COMPARATIVE ANALYSIS OF THE FLOODS FREQUENCE ON TELEORMAN AND GALBEN RIVERS

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

THE REFERENCE EVAPOTRANSPIRATION AND THE CLIMATIC WATER DEFICIT IN THE WESTERN PLAIN OF ROMANIA, NORTH OF THE MURE RIVER

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS

CONSIDERATIONS ABOUT THE INFLUENCE OF CLIMATE CHANGES AT BAIA MARE URBAN SYSTEM LEVEL. Mirela COMAN, Bogdan CIORUŢA

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Basins-Level Heavy Rainfall and Flood Analyses

GIS METHODOLOGY FOR THE CALCULATION OF PROBABLE PEAK DISCHARGE TIME OF CONCENTRATION IN SMALL DRAINAGE BASINS. CASE STUDY

THE LIQUID PRECIPITATION ABUNDANCE OF THE PRUT BASIN IN JULY 2008

TYPES OF HYDRIC REGIME IN THE SMALL RIVER BASINS FROM ROMANIA IN TERMS OF ANNUAL AVERAGE FLOW VARIATION

DETECTION AND FORECASTING - THE CZECH EXPERIENCE

HEAT WAVES FREQUENCY IN SOUTHERN ROMANIA, BETWEEN

STATISTICAL ANALYSIS OF CONVECTIVE STORMS BASED ON ORADEA AND BOBOHALMA WSR-98D RADAR IN JULY

Rainfall Analysis in Mumbai using Gumbel s Extreme Value Distribution Model

THERMIC CHARACTERIZATION OF THE YEARS AND MONTHS OF THE AGRICULTURAL PERIOD , AT ORADEA

GEOLOGICAL AND HYDROGEOLOGICAL CONSIDERATIONS ON THE PHREATIC AQUIFER OF THE TARNAVA MICA RIVER FLOOD PLAIN AND TERRACES

MONITORING OF SURFACE WATER RESOURCES IN THE MINAB PLAIN BY USING THE STANDARDIZED PRECIPITATION INDEX (SPI) AND THE MARKOF CHAIN MODEL

A STUDY REGARDING THE HYDROLOGICAL FEATURES OF THE TUR VALLEY

GEOL 1121 Earth Processes and Environments

Solution: The ratio of normal rainfall at station A to normal rainfall at station i or NR A /NR i has been calculated and is given in table below.

ANALYSIS OF THE FLOODS EFFECTS IN JUNE 2016 IN THE VORONET RIVER HYDROGRAPHIC BASIN

CHANGES IN THE FREQUENCY AND MAGNITUDE OF FLOODS IN THE BUCEGI MOUNTAINS (ROMANIAN CARPATHIANS)

CASE STUDY REGARDING SOIL TEMPERATURE IN THE PLAIN OF THE CRIȘ RIVERS

Section 4: Model Development and Application

Large Alberta Storms. March Introduction

PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, VOL. 5, no. 1, 2011

SOME ASPECTS REGARDING THE CURRENT CLIMATIC TRENDS IN ORADEA, IN THE GLOBAL WARMING CONTEXT

THE HYDROLOGICAL MODELING OF THE USTUROI VALLEY - USING TWO MODELING PROGRAMS - WetSpa and HecRas

THE REGIME OF THE ATMOSPHERIC PRECIPITATION IN THE BARCĂU HYDROGRAPHICAL BASIN

ENGINEERING HYDROLOGY

GEOGRAPHIA NAPOCENSIS Anul V, nr. 1/2011

PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, NR. 3, 2009

Gully erosion and associated risks in the Tutova basin Moldavian Plateau

Urban-rural humidity and temperature differences in the Beijing area

MORPHOMETRIC CHARACTERISTICS OF THE HYDROGRAPHIC NETWORK FROM CULA RIVER BASIN, REPUBLIC OF MOLDOVA. Abstract

USING GIS TECHNIQUES AND RAINFALL WSR-98D RADAR ESTIMATIONS FROM FAST PRECIPITATIONS MONITORING IN SMALL CATCHMENTS.

PREDICTING THE POTENTIAL INDEX OF MAJOR FLOODS PRODUCTION IN THE SUHA RIVER BASIN (SUHA BUCOVINEANA)

SOUTH-WESTERN APUSENI MOUNTAINS SMALL RIVERS SEASONAL HYDROLOGICAL FLOW REGIME

URBAN HEAT ISLAND IN SEOUL

THE ANALYSIS OF THE SILTING PROCESS OF VÂRŞOLŢ RESERVOIR

4 Precipitation. 4.1 Rainfall characteristics

COMPARATIVE STUDY OF THE FLOODS OCCURRED IN THE HYDROGRAPHICAL BASINS OF BISTRA MĂRULUI AND ŞUCU RIVERS (2005 and 2010)

Hydrologic Overview & Quantities

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN

THE FREQUENCY OF THE CLOUD TYPES IN THE HYDROGRAPHIC BASIN OF THE CRISUL REPEDE RIVER

OSCILLATIONS AND CYCLES OF THE AIR TEMPERATURE IN THE CHATHAM ISLANDS

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills

Effect of Storm Separation Time on Rainfall Characteristics-A Case Study of Johor, Malaysia

Mitigating flooding in a typical urban area in North Western Attica in Greece. Greece *Corresponding author:

WINFAP 4 QMED Linking equation

ANTHROPIC MODIFICATIONS OF THE RIVERBEDS OF IALOMIŢA AND IALOMICIOARA UPSTREAM FROM THEIR CONFLUENCE IN FIENI

UGRC 144 Science and Technology in Our Lives/Geohazards

4.17 Spain. Catalonia

Ground Water Protection Council 2017 Annual Forum Boston, Massachusetts. Ben Binder (303)

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte

RECENT CHANGES IN THUNDERSTORM ACTIVITY IN VASLUI

Extremes Events in Climate Change Projections Jana Sillmann

SIRIU RESERVOIR, BUZAU RIVER (ROMANIA)

THE THERMAL REGIME IN CRIŞUL NEGRU DRAINAGE BASIN

JUNE 2004 Flood hydrology of the Waiwhetu Stream

SOLUTIONS TO IMPROVE LAND SLIP IN THE SADOVA VECHE AREA (CARAS-SEVERIN COUNTY)

Appendix D. Model Setup, Calibration, and Validation

RAINFALL AGGRESSIVENESS EVALUATION

HEAVY PRECIPITATION IN THE FĂGĂRAŞ MOUNTAINS, 1-4 JUNE, 1988

GEOMORPHOLOGIC ANALYSIS AND CARTOGRAPHY BASED ON SPATIAL IMAGES. APPLICATIONS TO TWO MASSIFS FROM THE ROMANIAN CARPATHIANS

WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION

SPECIFIC THERMO-PLUVIOMETRIC FEATURES ON THE WESTERN MOUNTAINS SIDE OF WESTERN CARPATHIANS

THE INCIDENCE OF HYDROLOGICAL WARNINGS AT NATIONAL LEVEL INTENSITY AND SPATIAL DISTRIBUTION IN 2009

Study of risk and early warning index of rainstorm waterlogging in Wuhan City

Engineering Hydrology

PATTERNS OF THE MAXIMUM RAINFALL AMOUNTS REGISTERED IN 24 HOURS WITHIN THE OLTENIA PLAIN

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow

Flood management in Namibia: Hydrological linkage between the Kunene River and the Cuvelai Drainage System: Cuvelai-Etosha Basin

The Annals of Valahia University of Târgovişte, Geographical Series, Tome 4-5,

Climates of NYS. Definitions. Climate Regions of NYS. Storm Tracks. Climate Controls 10/13/2011. Characteristics of NYS s Climates

MAPPING THE EARTH HOW DO YOU FIND A LOCATION ON THE EARTH?

Correlations between some small hydrographic basins of the Rivers tributaries, from the forestry fund

Mapping of Flooding Points and Rainfall Data using ArcGIS Rio de Janeiro City - RJ - Brazil Events

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

An analysis on the relationship between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan

Interdecadal variation in rainfall patterns in South West of Western Australia

MAPPING THE FLASH FLOOD PRONE AREA IN THE TAITA WATERSHED (ROMANIA) USING TOPOGRAPHIC INDEXES AND HYDRAULIC MODEL

SPATIAL TEMPORAL VARIABILITY OF MAXIMUM FLOW IN SLĂNIC, TELEAJEN AND PRAHOVA RIVER BASINS

Estimating Probable Maximum Precipitation for Linau River Basin in Sarawak

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION

ASPECTS CONCERNING THE CLOGGING OF PUCIOASA LAKE

THE RISKS ASSOCIATED TO THE HOARFROST PHENOMENON IN THE WEST PLAIN

Design Storms for Hydrologic Analysis

University of Oradea, University Street, no. 1, Oradea, Romania, Ph.D. student in Geography, * * * * * *

Transcription:

RISCURI ŞI CATASTROFE, NR. XVII, VOL. 22, NR.1/2018 THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE C.-O. MAREŞ Abstract. The impact of the torrential precipitations in the formation of floods in the metropolitan area of Satu Mare. The study wishes to carry out an analysis of the maximum daily rainfall in the Satu Mare metropolitan area, its role in the formation of floods in the urban perimeter. The rain-drain process is complex in an urban area due to the qualitative changes of the topographic surface. The predomination of impermeable and quasi-impermeable surfaces determines the increase of the drainage coefficients on the urban surface. Corroborated with the reduced interception of highly anthropically modified vegetation and reduced retention due to the dominance of concrete or asphalt surfaces, floods occur on urban subbasins at high intensity rainfall. The maximum daily rainfalls in the Satu Mare metropolitan area exceeded 50 mm / 24 hours in some years, with the period 2007-2009 being noticed, such as values being recorded consecutively. As a case study, was analysed the downpour on May 13, 2017, when rainfall was 48.2 mm between the hours 11:10-16:40. The most important part of the rain in the downpour was recorded between 14:00 and 15:20. The high intensities of up to 0.53 mm/min, have generated in conjunction with drainage coefficients above 0.70, characteristic for impermeable surfaces, floods in various urban subbasins of Satu Mare metropolitan area. Comparative analysis of the data obtained from four pluviometric stations located on a 10 km radius in the proximity of the studied metropolitan area revealed a possible influence of the city on the amount of precipitations falling in the area. Keywords: torrential rainfalls, floods, urban areas, flooding, Satu Mare 1. INTRODUCTION The Satu Mare urban area is situated in the north-western extremity of Romania, at the intersection of the parallel 47 47' N latitude with the meridian 22 52' E longitude, in the central section of Someș River's low plain (Geografia României, IV, 1992) an average altitude of 126 m (NMN). From the physical and geographical point of view, the urban area occupies the Someș' meadow and low terraces, extending along both banks of the river, at a distance of about 13 km, on the border with Hungary to the west and about 28 km of frontier with Ukraine to the north. Hydrographic, the city is located in the lower sector of Someş River, at a distance of about 15 km upstream of the river's exit from Romania and about 40 99

C.-O. MAREŞ km upstream of the confluence with Tisa River. The city has developed into a meandering area of Someș in the low plains sector, away from relief units with different physical-geographic features. The relatively small dimensions of the analysed area and the geographical location do not reveal spectacular physicalgeographic features. The geological, geomorphological, climatic-hydrological, phyto-edaphic features have a feature dominated by monotony specific to the plain areas. The landscape is heavily anthropogenic, characteristic of the heavily transformed urban areas, the original natural features being preserved exceptionally on narrow surfaces. 2. DATA AND METHODS The data were obtained from the Someş - Tisa Water Administration from Cluj Napoca and from the National Meteorological Administration, as well as various bibliographic sources. The images were made by the author in the field. The research methods approached consisted in the direct observation in the field, the elaboration, analysis and interpretation of graphic, tabular and written materials. The Office Excel program was used to process statistical data. In the future scenarios we chose the variant of the six-degree polynomial equation for the alleviation of errors and a better loyalty fidelity. The rain intensity is the ratio between the amount of water expressed in mm (p) and the rainfall duration in minutes (t) and calculated from the relationship: The study of torrentiality is important because it is used in the dimensioning of the street network, the rainwater take-off and drainage network and in the design of hydro-technical constructions in the urban perimeter. The torrential nature of a rainfall has been determined by duration and intensity according to the Hellmann criterion (Table 1) Table 1. Classification of torrential rains according to the Hellmann criterion, Duration (minutes) Intensity (mm/minute) 1-5 at least 1 6-15 at least 0,80 16,30 at least 0,60 31-45 at least 0,50 46-60 at least 0,40 61-120 at least 0,30 121-180 at least 0,20 >180 at least 0,10 100

THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE 3. RESULTS AND DISCUTIONS The urbanization process determines ample changes in the physical and geographic factors reflected in the quantitative modification of the dome effect, qualitative modifications of the aerosols, and changes in the radiative balance. Reducing vegetation interceptions, mitigating the role of natural topographical microdepressiosn and reducing infiltration cause high rainfall, urban floods of pluvial nature. The analysis of the torrential precipitation rate in the Satu Mare metropolitan area reveals a 30% main maximum in the maximum daily precipitation gap of 30-34.9 mm / 24 hours. The maximum rainfall rate reached 0.53 mm/min, resulting in a pluvial flood on different urban river basins. The urban area under study determines some influence on the amount of precipitation in correlation with adjacent pluviometric stations. The undeniable assertion of this fact remains a subject of future geographic research. 3.1. The impact of torrential rainfalls on urban floods formation. The study analyses the correlation between rainfalls in the urban perimeter and the dynamics of internal rainwater on the surface of the urban area. The precipitations on the surface of the hydrographical basin come in contact with the vegetation cover, which retains a small amount representing the interception, and the depressions on the surface, without leakage, constitute the retention (I. Giurma, 2000, Water Management Systems, p. 18). The rain-drain process is extremely complex in an urban area. In nonanthropic areas, the rain-drainage process is controlled by the nature of the vegetation, the rate of soil infiltration, the nature of the soil, and the conformation of the topographic surface (slope, microdepressions, etc.). In the case of urban areas, the infiltration is reduced due to the predominance of impermeable surfaces resulting in a reduction of the water flow concentration times and a quantitative increase of the drainage coefficients. The vegetation in the urban areas is rare, discontinuous thus reducing the interception made by the vegetation coronation. V. A. Stănescu (Hidrologie urbană-1995, p. 17) states that the formation and circulation of rainwater is closely related to the increase in the degree of torrentiality caused by the change in heat and radiation balance, the dome's effect on the city and aerosol anomalies. Osman Akan and Robert J. Houghtalen (2003) appreciate that the natural drainage network in anthropogenically untransformed regions is replaced by a much shorter drainage network consisting of gullies and collectors characteristic for urban areas resulting in a concentration of rainwater flows. In hydrology studies it is important to know the maximum daily precipitation for the design and calibration of the rainwater drainage network. 101

C.-O. MAREŞ Fig.1. The distribution of the maximum annual rainfall amounts in 24 hours and the trend of evolution (1961-2015) at the Satu Mare mathematical station. (Source: ANM Archive). The distribution of the maximum daily volumes during the period 1962-2015 shows a relatively constant trend until 2010, after which the trend is of slight regression, probably the gradient following the general trend of mitigation of the annual average rainfall in the Satu Mare urban area. Low annual rainfall values below 25 mm were recorded in July 1962 (22.3 mm), July 1975 (21.6 mm), July 1992 (24.2 mm), October 1994 (23,4 mm) and 2013 (23.0 mm), due to a diminished frontal activity and the dominance of more dry or stable air masses. High amounts of over 50 mm / 24 hours were recorded in the years 1971, 1989, 1993, 2007, 2008 and 2009. It is worth mentioning the years 2007, 2008 and 2009, consecutive years with high values of the maximum daily rainfall. Fig. 2. The likelihood of production and the maximum daily subsistence level at the meteorological station Satu Mare (1961-2015). (Source: ANM Archive). 102

THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE To differentiate the return periods, the probability traceability and the maximum daily precipitation rate are used, underlining the values corresponding to each precipitation interval. The probability curve analysis of the frequency indicates that a main maximum of 30% occurs in the maximum daily precipitation 30-34.9 mm / 24 hours. Values greater than 35 mm have a probability of less than 10%. The degree of insurance decreases progressively with the increase of the maximum daily precipitation values. To determine the maximum daily precipitation frequency on different value ranges, maximum daily precipitation over 10 mm / 24 hours has been selected, as these may raise problems related to the exceeding of the water evacuation capacity rainwater from the urban perimeter of Satu Mare with the pertinence of the risk of internal pluvial floods in the hydrographic subbasins of the city. Fig. 3. Frequency of days with maximum precipitation amounts of 10-19,9 mm / 24 hours at the meteorological station Satu Mare (1961-2015). (Source: ANM Archive). The years with the highest frequency of daytime precipitation ranging from 10 to 19.9 mm / 24 hours were 1966, 1974, 1978 and 1998, in which over 25 cases per year were recorded. After 2001 there is a reduction of the frequency to less than 15 cases / year, probably correlated with the general trend of reducing the average annual precipitation in the studied area. 103

C.-O. MAREŞ Fig. 4. The frequency of the days with maximum precipitation amounts of 20-29,9 mm/24 hours at the meteorological station Satu Mare between 1961 and 2015. (Source: ANM Archive) The years with the highest frequency of daytime precipitation ranging from 20-9.9 mm / 24 with over 8 cases/year were 1974, 1980, 2001 and 2006. It is noted two periods of exacerbation of the rainfall frequency included in this gap and three periods of attenuation. Fig. 5. Frequency of days with maximum precipitation over 30 mm / 24 hours at Satu Mare meteorological station between 1961 and 2015 (Source: ANM Archive). For the maximum daily rainfall values exceeding 30 mm / 24 hours, the following years are noted with frequencies of 5 days/year, such as 1970, 1974, 104

THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE 1980, 1984 and 1998. From 2011 there is a decrease in the torrentality for this interval. In urban hydrology studies, torrent analysis is frequently used. Torrential rains are characterized by high amounts of precipitation falling within a short period of time. In Satu Mare, a torrential rain falling on May 13, 2017 amid the advection of a mass of wet and unstable air in the area, causes the flooding of the city's low sections due to its high intensity. The recording was carried out by the automatic pluviometer integrated into the Satu Mare hydrometric station located in the central sector of the urban area at the latitude 47 47'40" N, the longitude 22 49'31" E and the 123 m NMN average altitude on the right bank of the Someș River. Thus, in the interval of 11:10-16:40, 48.2 mm of rainfall fell. The most important aspect was recorded between 14:00 and 15:20. Fig. 6. The maximum precipitation rates recorded on 13 May 2017 at the Satu Mare hydrological station. Source: Archive (ABA Someş-Tisa, Cluj Napoca) Fig. 7. The intensity of precipitation recorded on 13 May 2017 at the Satu Mare hydrological station (Source: ABAST Cluj Napoca Archive) 105

C.-O. MAREŞ The maximum intensity of the torrential precipitation ranged between 0.25 mm/min and 0.53 m/min. Due to the downpour s high intensity, combined with the dominance of the impermeable surfaces characteristic to the urban areas, were obtained high values of the drain coefficients with the formation of a flood in certain subbasins integrated into the urban basin. Where the intensities exceeded 0.1 mm/min, there is a quantitative pluvial surplus that turns into free drainage on the surface of the river basin. The drainage coefficient is an important factor used to determine the net rain along with the interception value and the intensity of the infiltration. The drainage coefficient is defined as the ratio of the drained water layer h (net rainfall) and the hp water layer (Stănescu, 1995). The values of the drainage coefficient are expressed either according to the type of soil cover or by the socio-economic use of the urban area (Table 2). Table 2. Values of the leakage coefficient according to the use of the urban territory (V. Al. Stănescu, 1995). Use of urban territory Flow coefficient Comercial areas: 0.70 0.95 -downtown 0.50 0.70 -in other city areas Residential areas: 0.30 0.35 -buildings with courtyards 0.50 0.70 -block apartments 0.25 0.40 -suburban areas Medium industrialised areas 0.50 0.80 Highly industrialised areas 0.60 0.90 Parks 0.10 0.25 Sports grounds and recreational areas 0.20 0.35 Green areas 0.10 0.30 There are high values of drainage coefficients of 0.70 to 0.95 in the areas where pluvial floods occurred in domestic waters in different urban subbasins integrated in the Satu Mare metropolitan area (Table 2). At the high intensity of the flood, combined with the raised drainage coefficients, a low drainage slope of less than 1% characteristic of urban morphometry grafted on the relief of the Someș Plain (fig.8) was added. 106

THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE Fig. 8. Floods formed in the urban suburban suburbs of Satu Mare metropolitan area registered on 13 May 2017. (Source: personal photo archive) 3.2. Influence of the Satu Mare metropolitan area on the variation of the amount of rainfall. In order to devalue the influence of the Satu Mare urban area on the annual rainfall, a comparison was made between the meteorological station Satu Mare and the pluviometric stations of Hrip, Dara and Micula, located in a 10 km perimeter in the proximity of the municipality. 107

C.-O. MAREŞ Fig. 9. Variation of the average annual rainfall quantities at the pluviometric stations Hrip, Satu Mare, Dara and Micula, (1999-2015). (Source: ABA Someş-Tisa, Cluj Napoca Archive). Table 3. Annual average rainfall rates at the pluviometric stations Hrip, Satu Mare, Dara and Micula (1999-2015). (Source: ABA Someş-Tisa, Cluj Napoca Archive) Year Hrip Satu Mare Dara Micula 1999 759,5 687,8 709,3 639,5 2000 547,3 527,6 555,7 403,1 2001 876,5 755,1 788,5 720,1 2002 767,3 617,5 629,6 547,9 2003 672,3 501,7 536,2 378,8 2004 688,8 647,8 598,1 478,9 2005 671,7 756,9 470 533,8 2006 837 692,8 681 485.0 2007 628,2 709,9 662,5 44,0 2008 791,5 835.0 703.0 626,9 2009 647,9 628,9 720,6 582,0 2010 875,6 995,6 868,8 624.8 2011 523,8 455,4 386,4 412,7 2012 493,2 462,6 448,9 402,1 2013 698,8 679,9 690,5 592,3 2014 530,2 579,4 497,7 407,3 2015 663,1 527,5 482,8 400,3 Multian. average 686,6 650,7 613,5 510,3 On the whole, the highest quantity is recorded at the Hrip station, with 663.1 mm, probably due to the situation in front of the orographic barrier formed by Codru Hill. The Satu Mare Meteorological Station records an average value close to 650.7 mm with a maximum of 995.6 mm in 2010 (Table 3). Follow the stations Dara with 613.5 mm and Micula with 510.3 mm (Fig. 10). We consider that the higher precipitation from the Satu Mare meteorological station compared 108

THE IMPACT OF THE TORRENTIAL PRECIPITATIONS IN THE FORMATION OF FLOODS IN THE METROPOLITAN AREA OF SATU MARE to the Dara and Micula pluviometric stations, as well as the peak in 2010, could have been influenced the presence of the urban area. However, it is difficult to estimate the magnitude of urban influence in relation to the spatial-temporal variations in precipitation. Fig. 10. Distribution of the annual average rainfall quantities at the pluviometric stations Hrip, Satu Mare, Dara and Micula (1999-2015) (Source: ABA Someş - Tisa, Cluj Napoca. Archive) 4. CONCLUSIONS The rain-drain process is extremely complex in an urban area due to significant changes in the active surface; In non-anthropic areas, the rain-drainage process is controlled by the nature of the vegetation, the rate of soil infiltration, the nature of the soil, and the conformation of the topographical surface. In urban areas, infiltration is reduced due to the predominance of impermeable surfaces resulting in a reduction in water flow concentration times and increased drainage coefficients. High volumes of maximum daily rainfall over 50 mm / 24 hours were recorded in 1971, 1989, 1993, 2007, 2008 and 2009. The probabilistic curve analysis of the frequency indicates that a main maximum of 30% occurs in the 30-34.9 mm / 24 hour maximum precipitation range. The maximum intensities of torrential rainfalls from the 13 of May, 2017 ranged between 0.25 mm/min and 0.53 m/min, causing urban floods. 109

C.-O. MAREŞ Comparative analysis between the four close pluviometric stations shows that the highest recorded value was at Hrip station, with 663.1 mm, probably due to the situation in front of the orographic barrier formed by Codru Hill. Satu Mare records an average value of 650.7 mm in the period 1999-2015, with a maximum of 995.6 mm in 2010, the peak representing the maximum value of the four stations, followed by Dara with 613.5 mm and Micula with 510.3 mm. REFERENCES 1. Akan A. Osman, Houghtalen J. Robert, (2003), Urban hydrology, hydraulics and stormwater quality, Wiley & Sons, Inc., p. 1-3 2. GACEU R. O (2001), Elemente de meteorologie practică, Editura Universităţii din Oradea, p 64-68 3. GIURMA, I. (2000), Sisteme de gospodărire a apelor, Editura Ceremi, Iași, 4. MAREȘ, C.O. SANISLAI, D.N., (2010), Tendințe climatice actuale în bazinul hidrografic al Someșului inferior, Studiu de caz-municipiul Satu Mare, Geographia Napocensis An IV, Nr. 1/2010, p. 108-109 5. STĂNESCU, V. AL., (1995), Hidrologie urbană, Editura Didactică și Pedagogică, București, p. 58-60 6. ***(2006), Arhiva Centrului Meteorologic Regional Transilvania Nord, Cluj Napoca 7. ***(2010), Arhiva SGA Satu Mare-ABAST Cluj Napoca 110