Many-Body Anderson Localization in Disordered Bose Gases

Similar documents
Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms

Ultracold Bose gases in random potentials: elementary excitations and localization effects

Disordered Ultracold Gases

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Fundamentals and New Frontiers of Bose Einstein Condensation

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3

Suppression and revival of weak localization by manipulation of time reversal symmetry

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Bogoliubov theory of disordered Bose-Einstein condensates

Experimental Studies of Bose-Einstein Condensates in Disorder

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Anderson localization of ultracold atoms in a (laser speckle) disordered potential: a quantum simulator

Cold atoms in the presence of disorder and interactions

sun surface water boiling water freezing liquid nitrogen cosmic background radiation superfluidity, superconductivity laser cooling

arxiv: v1 [cond-mat.other] 19 Aug 2008

Direct observation of Anderson localization of matter-waves in a controlled disorder

Phase coherence and superfluid-insulator transition in a disordered Bose-Einstein condensate

Reference for most of this talk:

Impurities and disorder in systems of ultracold atoms

Ultracold Atoms and Quantum Simulators

Strongly interacting bosons in a disordered optical lattice

Non-Equilibrium Physics with Quantum Gases

Low dimensional quantum gases, rotation and vortices

Anderson localization of ultracold atoms in a (laser speckle) disordered potential

arxiv: v2 [cond-mat.quant-gas] 6 Mar 2017

Quantum noise studies of ultracold atoms

Physica D. Experimental studies of Bose Einstein condensates in disorder

Condensate fraction for a polarized three-dimensional Fermi gas

Reduced dimensionality. T. Giamarchi

Speed of sound in disordered Bose-Einstein condensates

Fundamentals and New Frontiers of Bose Einstein Condensation

Strongly paired fermions

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Learning about order from noise

When superfluids are a drag

Quantum Properties of Two-dimensional Helium Systems

Anderson localization of a non-interacting Bose-Einstein condensate

Confining ultracold atoms on a ring in reduced dimensions

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Publications. Articles:

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Anderson Localization Theoretical description and experimental observation in Bose Einstein-condensates

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Interference experiments with ultracold atoms

DMFT for correlated bosons and boson-fermion mixtures

Interaction between atoms

Lecture 4. Feshbach resonances Ultracold molecules

Loop current order in optical lattices

Strongly correlated systems: from electronic materials to cold atoms

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Cooperative Phenomena

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Renormalization flow of the Anderson localization transition

Quantised Vortices in an Exciton- Polariton Condensate

INTERACTING BOSE GAS AND QUANTUM DEPLETION

Momentum isotropisation in random potentials

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

From Optical Pumping to Quantum Gases

On the Dirty Boson Problem

Strongly Correlated Physics With Ultra-Cold Atoms

Fermi Condensates ULTRACOLD QUANTUM GASES

Preface Introduction to the electron liquid

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Design and realization of exotic quantum phases in atomic gases

One dimensional bosons: Atoms to molecules

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright

A Mixture of Bose and Fermi Superfluids. C. Salomon

Statement of research interests David Pekker Department of Physics, Caltech University, Pasadena, CA 91125, USA

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Finding the Elusive Sliding Phase in the Superfluid-Normal Phase Transition Smeared by \(c\)-axis Disorder

Strongly correlated Cooper pair insulators and superfluids

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

---emulating dynamics and fluctuations in superfluids and nuclear matter?

Learning about order from noise

arxiv: v2 [cond-mat.quant-gas] 23 Jan 2016

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Low-dimensional Bose gases Part 1: BEC and interactions

Disorder-Induced Order in Two-Component Bose-Einstein Condensates

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

2D Bose and Non-Fermi Liquid Metals

Detecting boson-vortex duality in the cuprate superconductors

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2015

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Microcavity Exciton-Polariton

Quantum Phase Transitions

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Coherent backscattering in Fock space. ultracold bosonic atoms

Lattice modulation experiments with fermions in optical lattices and more

Transcription:

Many-Body Anderson Localization in Disordered Bose Gases Laurent Sanchez-Palencia Laboratoire Charles Fabry - UMR8501 Institut d'optique, CNRS, Univ. Paris-sud 11 2 av. Augustin Fresnel, Palaiseau, France

Acknowledgements Quantum Matter Theory team Anderson localization in ultracold atoms M. Piraud, L. Pezzé (now in Florence), B. Hambrecht Many-body localization in disordered Bose Gases S. Lellouch, L.-K. Lim, T.-L. Dao, P. Lugan (now in Lausanne) Quantum Monte Carlo force G. Boeris, G. Carleo Collaboration and stimulating discussions A. Aspect's experimental group, T. Bourdel, P. Bouyer, V. Josse et al. B. van Tiggelen, T. Giamarchi, M. Lewenstein, and many others 2

Anderson Localization : A Brief Overview E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979) One-parameter scaling theory Renormalization Group flow : dln(g) / dlnl = (g) Anderson transition insulating fixed point insulator : g(l) ~ exp(-l/lloc) (g) ~ ln(g) - Ad metallic fixed point (g) d=3 d=2 d=1 ln(g) metal : g(l) ~ Ld-2 (g) ~ d - 2 - Bd/g 1D : all states localized Lloc ~ l* 2D : all states localized Lloc ~ l*exp(kl*/b2) 3D : mobility edge at kl*= c~1 kl*> c: diffusion kl*< c: localization 3

Anderson Localization : A Brief Overview Interplay of disorder and interactions Relevant to many systems Electronic systems (Coulomb interaction) Dirty superconductors 4 He superfluid films in porous media Ultracold atoms An outstanding problem of notorious difficulty Strongly depends on the nature of quantum particles (bosons, fermions,...) the nature of interactions (attractive/repulsive, short/long range,...) the system dimension (1D, 2D, 3D,...) Competition or cooperation of disorder and interactions 4

Disordered, Interacting Bose Gas Hertz et al., Phys. Rev. Lett. 43, 942 (1979) Giamarchi and Schulz, Europhys. Lett. 3, 1287 (1987) Giamarchi and Schulz, Phys. Rev. B 37, 325 (1988) Lee and Gunn, J. Phys.: Cond. Matt. 38, 7753 (1990) Altman et al., Phys. Rev. Lett. 93, 150402 (2004) Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) Falco et al., Europhys. Lett. 85, 30002 (2009) 1D case K=3/2 for counterpart in Bose lattice systems, see Fisher et al., Phys. Rev. B 40, 546 (1989) Scalettar et al., Phys. Rev. Lett. 66, 3140 (1991) Rapsch et al., Europhys. Lett. 46, 559 (1999) A highly nontrivial behavior weak interactions compete with the disorder strong interactions cooperate with the disorder 5

Disordered, Interacting Bose Gas Hertz et al., Phys. Rev. Lett. 43, 942 (1979) Giamarchi and Schulz, Europhys. Lett. 3, 1287 (1987) Giamarchi and Schulz, Phys. Rev. B 37, 325 (1988) Lee and Gunn, J. Phys.: Cond. Matt. 38, 7753 (1990) Altman et al., Phys. Rev. Lett. 93, 150402 (2004) Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) Falco et al., Europhys. Lett. 85, 30002 (2009) 1D case K=3/2 for counterpart in Bose lattice systems, see Fisher et al., Phys. Rev. B 40, 546 (1989) Scalettar et al., Phys. Rev. Lett. 66, 3140 (1991) Rapsch et al., Europhys. Lett. 46, 559 (1999) A highly nontrivial behavior weak interactions compete with the disorder strong interactions cooperate with the disorder 6

Condensed Matter with Ultracold Atoms Flexibility control of parameters (dimensionality, shape, interactions, bosons/fermions/mixtures,...) High-precision measuments complementary to condensed-matter tools variety of diagnostic tools (direct imaging, velocity distribution, oscillations, Bragg spectroscopy,...) from J.R. Ensher et al., Science 269, 198 (1995) Model systems parameters known ab-initio direct comparison with theory towards quantum simulators controlled systems to study basic questions specific ingredients in ultracold atoms 7

Condensed Matter with Ultracold Atoms Superfluid-Mott insulator ttransition (Hänsch, Bloch, Esslinger) Tonks-Girardeau gas (Weiss, Bloch) BEC-BCS crossover (Jin, Ketterle, Grimm, Salomon) Quantized vortices in Fermion gases (Ketterle) Berezinskii-Kosterlitz-Thouless crossover (Dalibard, Phillips, Cornell) Spin super-exchange (Phillips, Bloch) Anderson localization (Aspect, Inguscio, Hulet, DeMarco) 8

Investigating Quantum Disordered Systems with Ultracold Atoms LSP and M. Lewenstein, Nat. Phys. 6, 87 (2010) Tackling many oustanding challenges on disordered systems with ultracold atoms - Anderson localization - interplay of interactions (non-linearities) and disorder - disordered, strongly-correlated systems (bosons, fermions) - simulators for disordered, spin systems 9

Anderson Localization in Ultracold Atom Gases 10

Anderson Localization in Ultracold Atom Gases 1D single-particle Anderson localization LSP et al., Phys. Rev. Lett. 98, 210401 (2007) Billy et al., Nature 453, 891 (2008) Roati et al., Nature 453, 895 (2008) Piraud et al., Phys. Rev. A 83, 031603(R) (2011) 11

Anderson Localization in Ultracold Atom Gases 1D single-particle Anderson localization LSP et al., Phys. Rev. Lett. 98, 210401 (2007) Billy et al., Nature 453, 891 (2008) Roati et al., Nature 453, 895 (2008) Piraud et al., Phys. Rev. A 83, 031603(R) (2011) 3D single-particle Anderson localization Kuhn et al., New J. Phys. 9, 161 (2007) Skipetrov et al., Phys. Rev. Lett. 100, 165301 (2008) Kondov et al., Science 334, 66 (2011) Jendrzejewski et al., Nature Phys. 8, 398 (2012) Piraud et al., Europhys. Lett. 99, 50003 (2012) 12

Anderson Localization in Ultracold Atom Gases 1D single-particle Anderson localization LSP et al., Phys. Rev. Lett. 98, 210401 (2007) Billy et al., Nature 453, 891 (2008) this workshop RoatiSee et al.,posters Nature 453,in 895 (2008) Piraud et al., Phys. Rev. A 83, 031603(R) (2011) J. Richard et al., «Ultra-cold atoms in disorder: 3D localization and coherent backscattering» Jendrzejewski et al., Nature Phys. 8, 398 (2012) M. Piraud et al., «Matter wave transport and Anderson localization in anisotropic disorder» Piraud et al., Europhys. Lett. 99, 50003 (2012) Piraud et al., Phys. Rev. A 85, 063611 (2012) 3D single-particle Anderson localization Kuhn et al., New J. Phys. 9, 161 (2007) Skipetrov et al., Phys. Rev. Lett. 100, 165301 (2008) Kondov et al., Science 334, 66 (2011) Jendrzejewski et al., Nature Phys. 8, 398 (2012) Piraud et al., Europhys. Lett. 99, 50003 (2012) 13

Anderson Localization in Ultracold Atom Gases 1D single-particle Anderson localization LSP et al., Phys. Rev. Lett. 98, 210401 (2007) Billy et al., Nature 453, 891 (2008) Roati et al., Nature 453, 895 (2008) Piraud et al., Phys. Rev. A 83, 031603(R) (2011) Effects of interactions in expanding gases Paul et al., Phys. Rev. Lett. 98, 210602 (2007) Kopidakis et al., ibid. 100, 084103 (2008) Pikovsky & Shepelyansky, ibid. 100, 094101(2008) Flach et al., ibid. 102, 024101(2009) Lucioni et al., ibid. 106, 230403 (2011) 3D single-particle Anderson localization Kuhn et al., New J. Phys. 9, 161 (2007) Skipetrov et al., Phys. Rev. Lett. 100, 165301 (2008) Kondov et al., Science 334, 66 (2011) Jendrzejewski et al., Nature Phys. 8, 398 (2012) Piraud et al., Europhys. Lett. 99, 50003 (2012) 14

Anderson Localization in Ultracold Atom Gases 1D single-particle Anderson localization LSP et al., Phys. Rev. Lett. 98, 210401 (2007) Billy et al., Nature 453, 891 (2008) Roati et al., Nature 453, 895 (2008) Piraud et al., Phys. Rev. A 83, 031603(R) (2011) Effects of interactions in expanding gases Paul et al., Phys. Rev. Lett. 98, 210602 (2007) Kopidakis et al., ibid. 100, 084103 (2008) Pikovsky & Shepelyansky, ibid. 100, 094101(2008) Flach et al., ibid. 102, 024101(2009) Lucioni et al., ibid. 106, 230403 (2011) Effects of interactions in trapped gases 3D single-particle Anderson localization Kuhn et al., New J. Phys. 9, 161 (2007) Skipetrov et al., Phys. Rev. Lett. 100, 165301 (2008) Kondov et al., Science 334, 66 (2011) Jendrzejewski et al., Nature Phys. 8, 398 (2012) Piraud et al., Europhys. Lett. 99, 50003 (2012) Damski et al., Phys. Rev. Lett. 91, 080403 (2003) Roth & Burnett, Phys. Rev. A 68, 023604(2003) Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) Falco et al., Phys. Rev. A 75, 063619 (2007) Fallani et al., Phys. Rev. Lett. 98, 130404 (2007) Deissler et al., Nat. Phys. 6, 354 (2010) 15 Pasienski et al., Nat. Phys. 6, 677 (2010)

Disordered, Interacting Bose Gas Bose gas at thermal equilibrium in a disordered potential with repulsive interactions any dimension d Ĥint = (g/2) dr (r) (r) (r) (r), 2 with 0 < g (ℏ /m) n 2/d-1 g (ℏ /m) n VR 2 Disordered potential Ĥdis = dr V(r) (r) (r) R V(r) = VRv (r/ R), where VR is the amplitude and R the correlation length 16

Disordered, Weakly interacting Bose Gas fixed value of R=ℏ2/2m R2VR Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) LSP, Phys. Rev. A 74, 053625 (2006) Generic quantum state diagram: The various regimes result from the interplay of kinetic energy, interactions, and disorder. For bosons, strong (mean field) interactions delocalize Boundaries between regimes are straight lines 17

Disordered, Weakly interacting Bose Gas fixed value of R=ℏ2/2m R2VR Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) LSP, Phys. Rev. A 74, 053625 (2006) Lifshits-Anderson glass Interactions determine the populations of single-particle localized states 18

Disordered, Weakly interacting Bose Gas Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) Lifshits-Anderson regime Single-particle eigenstates : energies P = 1/ dr (r) 4 : participation length N( ) : DoS (stretched exponential) 19

Disordered, Weakly interacting Bose Gas Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) Lifshits-Anderson regime Single-particle eigenstates : energies P = 1/ dr (r) 4 : participation length N( ) : DoS (stretched exponential) Minimize energy with ansatz 20

Disordered, Weakly interacting Bose Gas fixed value of R=ℏ2/2m R2VR Lifshits-Anderson glass Interactions determine the populations of single-particle localized states Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) LSP, Phys. Rev. A 74, 053625 (2006) fragmented BEC Interplay of interactions and disorder. The interactions tends to merge the fragments 21

Disordered, Weakly interacting Bose Gas fixed value of R=ℏ2/2m R2VR Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) LSP, Phys. Rev. A 74, 053625 (2006) (quasi-)bec Disorder only weakly affects the density profile: single connected fragment Lifshits-Anderson glass Interactions determine the populations of single-particle localized states fragmented BEC Interplay of interactions and disorder. The interactions tends to merge the fragments 22

Disordered, Weakly interacting Bose Gas LSP, Phys. Rev. A 74, 053625 (2006) (quasi-)bec regime In meanfield approach, The healing length, sets the minimal, varition scale of nc(r) 23

Disordered, Weakly interacting Bose Gas LSP, Phys. Rev. A 74, 053625 (2006) (quasi-)bec regime In meanfield approach, The healing length, sets the minimal, varition scale of nc(r) For / R 1 (Thomas-Fermi) not fragmented if VR 24

Disordered, Weakly interacting Bose Gas P. Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) 25

Disordered, Weakly interacting Bose Gas Bose gas at thermal equilibrium in a disordered potential with repulsive interactions any dimension d Ĥint = (g/2) dr (r) (r) (r) (r), 2 with 0 < g (ℏ /m) n 2/d-1 g (ℏ /m) n VR 2 Disordered potential Ĥ = dr V(r) (r) (r)interactions dis Strong-enough repulsive R destroy V(r) = localization VRv (r/ R), where VR is the amplitude and R the correlation length 26

Disordered, Weakly interacting Bose Gas Bose gas at thermal equilibrium in a disordered potential with repulsive interactions any dimension d Ĥint = (g/2) dr (r) (r) (r) (r), 2 with 0 < g (ℏ /m) n 2/d-1 g (ℏ /m) n VR 2 Disordered potential Ĥ = dr V(r) (r) (r)interactions dis Strong-enough repulsive R destroy V(r) = localization VRv (r/ R), of background! where VR is the amplitude and R the correlation length Let us consider many-body excitations, ie Bogoliubov quasiparticles 27

Many-Body Anderson Localization in a Disordered Bose Gas P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) see also N. Bilas and N. Pavloff, Eur. Phys. J. 40, 387 (2006) V. Gurarie et al., Phys. Rev. Lett. 101, 170407 (2008) C. Gaul and C.A. Müller, Europhys. Lett. 83, 10006 (2008); Phys. Rev. A 83, 063629 (2011) Consider the many-body Hamiltonian Apply the standard Bogolyubov-Popov approach Then, determine 1) The (quasi-)bec background nc 2) The Bogoliubov quasi-particles (excitations) 28

(Quasi-)BEC Background LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 1) The (quasi-)bec background nc : smoothing solution In meanfield approach, For / R 1 (Thomas-Fermi) not fragmented if VR 29

(Quasi-)BEC Background LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 1) The (quasi-)bec background nc : smoothing solution In meanfield approach, For arbitrary value of / R, apply Green-function perturbation not fragmented if VR V(r) : smoothed potential 30

(Quasi-)BEC Background LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 1) The (quasi-)bec background nc : smoothing solution V(r) : smoothed potential 31

(Quasi-)BEC Background LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 1) The (quasi-)bec background nc : smoothing solution V(r) : smoothed potential 32

(Quasi-)BEC Background LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 1) The (quasi-)bec background nc : smoothing solution V(r) should never be approximated by V(r), even for / R 1 V(r) : smoothed potential 33

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 2) Collective excitations Insert Then, look for the modes that diagonalize Ĥ 34

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 2) Collective excitations 35

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) 2) Collective excitations 36

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) To solve the problem, use the auxiliary functions with 37

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) To solve the problem, use the auxiliary functions with Retain the lowest order terms (in V) maps the BdGE into a single-wave equation with a screened potential Advantages of this formulation : - easier to solve than the coupled BdGEs! - clear physical picture 38

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) To solve the problem, use the auxiliary functions with Retain the lowest order terms (in V) maps the BdGE into a single-wave equation with a screened potential note : Advantages of this formulation : - easier to solve than the coupled BdGEs! - clear physical picture 39

Anderson Localization of Bogoliubov Quasiparticles P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) To solve the problem, use the auxiliary functions with Retain the lowest order terms (in V) maps the BdGE into a single-wave equation with a screened potential Can be solved much easier than the BdGE! note : 40

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 41

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 42

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 43

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 44

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 45

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential For k 1/ : strong screening ~ k2 for k 0 (elastic media) For k 1/ : no screening ~ 1/k2 for k (free particles) 46

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 47

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 48

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential 1D speckle potential Analytics : screened formalism (solid lines : order 2 ; dotted lines : order 3) Numerics : direct diagonalization of the coupled BdGEs Very good agreement R/ =3.70 R/ =1.22 R/ =0.40 49

Anderson Localization of Bogoliubov Quasiparticles : 1D P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Many-body AL in a 1D disordered potential For fixed parameters, maximum of localization at k ~ min(1/ ; 1/ R) 1D speckle potential Absolute maximum of localization for ~ R Lloc ~ 280μm experimentally accessible 50

Conclusions and Perspectives Disorder and interactions in Bose gases Meanfield level (Gross-Pitaevskii) Repulsive interactions delocalize the density background Equation of state easily obtained Relevance of the «smoothed disordered potential» Many-body excitations (Bogoliubov quasiparticles) Anderson localization Localization properties can be calculated Perspectives Extension to higher dimensions, beyond standard self-consistent theory 51

Recent Work Disordered spins with two-component ultracold gases A. Sanpera et al., Phys. Rev. Lett. 93, 040401 (2004) V. Ahufinger et al., Phys. Rev. A 72, 063616 (2005) J. Wehr et al., Phys. Rev. B 74, 224448 (2006) A. Niederberger et al., Phys. Rev. Lett. 100, 030403 (2008) Anderson localization in 1D BECs LSP et al., Phys. Rev. Lett. 98, 210401 (2007) LSP et al., New J. Phys. 10, 045019 (2008) J. Billy et al., Nature 453, 891 (2008) P. Lugan et al., Phys. Rev. A 80, 023605 (2009) M. Piraud et al., Phys. Rev. A 83, 031603(R) (2011) M. Piraud and LSP, arxiv:1209.1606 Disordered trapped fermions L. Pezzé et al., Europhys. Lett. 88, 30009 (2009) L. Pezzé and LSP, Phys. Rev. Lett. 106, 040601 (2011) Anderson localization in dimension d>1 F. Jendrzejewski et al., Nat. Phys. 8, 398 (2012) M. Piraud, L. Pezzé and LSP, Euophys. Lett. 99, 50003 (2012) M. Piraud, A. Aspect and LSP, Phys. Rev. A 85, 063611 (2012) Disordered, interacting Bose gases and many-body localization LSP, Phys. Rev. A 74, 053625 (2006) P. Lugan et al., Phys. Rev. Lett. 98, 170403 (2007) P. Lugan et al., Phys. Rev. Lett. 99, 180402 (2007) D. Clément et al., Phys. Rev. A 77, 033631 (2008) P. Lugan and LSP, Phys. Rev. A 84, 013612 (2011) Transport in 2D gases R. Martin-de-Saint-Vincent et al., Phys. Rev. Lett. 104, 220602 (2010) 52 L. Pezzé et al., New J. Phys. 13, 095015 (2011)