,,, (Apostichopus japonicus), , , S917.1 doi: /hyhz

Similar documents
The microbiome and its influence on plant growth and health. Friederike Trognitz

Amplicon Sequencing. Dr. Orla O Sullivan SIRG Research Fellow Teagasc

This supplementary information includes the data and corresponding citations

19-1 Notes Bacteria. Named after the Greek word Little stick because many bacteria have a stick-like shape when viewed under a microscope

Microbiome: 16S rrna Sequencing 3/30/2018

Katrina Agno Lutap Iowa State University. Iowa State University Capstones, Theses and Dissertations. Graduate Theses and Dissertations

Impact of training sets on classification of high-throughput bacterial 16s rrna gene surveys

FIG S1: Rarefaction analysis of observed richness within Drosophila. All calculations were

A Novel Ribosomal-based Method for Studying the Microbial Ecology of Environmental Engineering Systems

Microbial evolution and phylogeny

Identification of Vibrio tubiashii isolated from diseased pond-cultured sea cucumbers ( Apostichopus japonicus)

Microbiota: Its Evolution and Essence. Hsin-Jung Joyce Wu "Microbiota and man: the story about us

The search for ancestrally anoxygenic or non-phototrophic Cyanobacteria

Root- associated Bacterial Communities in Flax (Linum usitatissimum) and Their Response to Arbuscular Mycorrhizal (AM) Inoculation

Supplement of Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

Outline Classes of diversity measures. Species Divergence and the Measurement of Microbial Diversity. How do we describe and compare diversity?

Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Probing diversity in a hidden world: applications of NGS in microbial ecology

Bacteria Outline. 1. Overview. 2. Structural & Functional Features. 3. Taxonomy. 4. Communities

Microbial diversity pa1erns in rela3on to hydrocarbon seepage

Figure Page 117 Microbiology: An Introduction, 10e (Tortora/ Funke/ Case)

Microbial Diversity and Assessment (II) Spring, 2007 Guangyi Wang, Ph.D. POST103B

Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Microbial Taxonomy. Slowly evolving molecules (e.g., rrna) used for large-scale structure; "fast- clock" molecules for fine-structure.

The Effect of Primer Choice and Short Read Sequences on the Outcome of 16S rrna Gene Based Diversity Studies

MiGA: The Microbial Genome Atlas

Characterizing and Classifying Prokaryotes

Exploring Microbes in the Sea. Alma Parada Postdoctoral Scholar Stanford University

016/03/11/world/bact eria-discoveryplastic/index.html

Taxonomy and Clustering of SSU rrna Tags. Susan Huse Josephine Bay Paul Center August 5, 2013

Characterizing and Classifying Prokaryotes

Primary test on artificial spawning induction and larvae rearing of Holothuria scabra

Microbial Diversity. Yuzhen Ye I609 Bioinformatics Seminar I (Spring 2010) School of Informatics and Computing Indiana University

The Prokaryotic World

Microbial Taxonomy. Classification of living organisms into groups. A group or level of classification

Microbiology Helmut Pospiech

Biogeography of major bacterial groups in the Delaware Estuary

Microbioma da Rizosfera

Sequencing of microbial genomes has accelerated with reductions

Characterizing and Classifying Prokaryotes

MICROBIOLOGY ECOLOGY. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA.

Midterm Exam #2. MB 451 : Microbial Diversity. 1. What are the 3 primary evolutionary branches of life? (5pts) ARCHAEA, BACTERIA, EUKARYA

Genomics and Bioinformatics

Microbiology / Active Lecture Questions Chapter 10 Classification of Microorganisms 1 Chapter 10 Classification of Microorganisms

Taxonomy. Content. How to determine & classify a species. Phylogeny and evolution

Culturing captures members of the soil rare biosphereemi_

Censusing the Sea in the 21 st Century

OCN621: Biological Oceanography- Sediment Microbiology. Guangyi Wang POST 103B

Bergey s Manual Classification Scheme. Vertical inheritance and evolutionary mechanisms

The Prokaryotes: Domains Bacteria and Archaea

Ch 27: The Prokaryotes Bacteria & Archaea Older: (Eu)bacteria & Archae(bacteria)

Introductory Microbiology Dr. Hala Al Daghistani

Introduction to Microbiology. CLS 212: Medical Microbiology Miss Zeina Alkudmani

The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide

ECOLOGY OF CALLIPHORID LARVAL MASSES AND POSTMORTEM COLONIZATION ESTIMATE VARIABILITY. Courtney R. Weatherbee

Abundance and Diversity of RuBisCO Genes Responsible for CO 2 Fixation in Arid Soils of Northwest China

Microbial genomics for de-risking offshore oil and gas exploration in Nova Scotia. Casey Hubert

Mapping the Tree of Life: Progress and Prospects

Comparing Prokaryotic and Eukaryotic Cells

Appendix S1 Materials and Methods Measuring microbial diversity

Phylogenetic diversity and conservation

Chad Burrus April 6, 2010

MATTHEW T. COTTRELL AND DAVID L. KIRCHMAN* College of Marine Studies, University of Delaware, Lewes, Delaware 19958

Assessing and Improving Methods Used in Operational Taxonomic Unit-Based Approaches for 16S rrna Gene Sequence Analysis

Title ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses

(DMB 01) M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER First Year. Microbiology. Paper I INTRODUCTION TO MICROORGANISMS

with emphasis on Atlantic mackerel (Scomber scombrus) Cecilie Smith Svanevik Bjørn Tore Lunestad Nordic Pelagic Workshop 2010 Gardermoen

Istituto di Microbiologia. Università Cattolica del Sacro Cuore, Roma. Gut Microbiota assessment and the Meta-HIT program.

Akita, L.G., 1 Frenzel, P., 2 Haberzettl, T., 2 Kasper, T. 2 Wang, J., 3 Peng, P., 3

The Role of the Horizontal Gene Pool and Lateral Gene Transfer in Enhancing Microbial Activities in Marine Sediments

Single-cell genomics applied to the picobiliphytes using next-generation sequencing

Supplementary Figure 1. Chao 1 richness estimator of microbial OTUs (16S rrna

Microbial Ecology and Microbiomes

The Diverse Bacterial Community in Intertidal, Anaerobic Sediments at Sapelo Island, Georgia

UNIVERSITY OF WISCONSIN-LA CROSSE. Graduate Studies EFFECTS OF BIOLOGICAL SOIL CRUSTS ON BACTERIAL DIVERSITY AND

Global patterns in the biogeography of bacterial taxaemi_2315

DNA metabarcoding reveals diverse but selective diet of three-spined stickleback in a coastal ecosystem

Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time

Microbial Taxonomy and the Evolution of Diversity

Supplementary File 4: Methods Summary and Supplementary Methods

A biogeographic distribution of magnetotactic bacteria influenced by salinity

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae.

* Author to whom correspondence should be addressed; Tel.: ; Fax:

Diversity, Productivity and Stability of an Industrial Microbial Ecosystem

NU. International Journal of Science 2018; 15(1) :

Deep sequencing to understand the marine environment. Jan Pawlowski Department of Genetics and Evolution University of Geneva

Introduction to microbiota data analysis

Changes in bacterial gut community of Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks after feeding on termiticidal bait material

MANGROVES ISOLATION OF CYANOBACTERIA. SCREENING FOR PLANT GROWTH PROMOTING ABILITIES Nitrogen fixation Phosphate Solubilization IAA production

Arctic Tundra in a Changing Climate

No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae)

Other resources. Greengenes (bacterial) Silva (bacteria, archaeal and eukarya)

Chapter 19. Microbial Taxonomy

Exploring*mutualistic*interactions*between*microalgae*and*bacteria*in*the*omics*age*

Assigning Taxonomy to Marker Genes. Susan Huse Brown University August 7, 2014

The phyllosphere is a habitat on the surface of plant leaves colonized

Soil microbial responses to climate perturbations Sarah E. Evans Kellogg Biological Station Michigan State University

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

Bacterial diversity in native habitats of the medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau as determined using Illumina sequencing data

Archaeal diversity and abundance within different layers of summer sea-ice and seawater from Prydz Bay, Antarctica

Transcription:

47 1 Vol.47, No.1 2016 1 OCEANOLOGIA ET LIMNOLOGIA SINICA Jan., 2016 * ( 116023) (Apostichopus japonicus),, 3, 9 26503 37825, 1502 5741 (OTUs) : (1), 3 ; (2) 9 26,, 17 ; (3),, 50.54% 99.91% ; ; S917.1 doi: 10.11693/hyhz20150300088 (Apostichopus japonicus), (Bordbar et al, 2011; Purcell et al, 2012),,,, (Wang et al, 2005), (, 2006; Deng et al, 2009; Li et al, 2010a), (Paerl et al, 2003; Luo et al, 2006),,,, (Amann et al, 1995; Hugenholtz et al, 2009),, (Rosselló-Mora et al, 2001; Auguet et al, 2009),, 16S rdna,, 16S rrna, PCR,, (Youssef et al, 2009; Caporaso et al, 2011), (2010) (2010) (2014), DGGE DGGE,, ;, *, 201105007-2,, E-mail: yandou1989@126.com :,,, E-mail: dingjun1119@dlou.edu.cn : 2015-03-24, : 2015-06-15

1 : 123 16S rrna,,, 16S rrna,,,, (Bell et al, 2013; Ren et al, 2015; Yang et al, 2015), Miseq ( ) ( ),, 1 1.1 2014 10 11 ( ) ( 1) 40cm 1L, 2 5cm 100g(, 2010), 表 1 样品标记信息 Tab.1 Labels of samples DJ1 DJ2 DJ9 DJ5 DJ6 DJ11 DJ12 DJ13 DJ14 1.2 DNA 0.22μm DNA OMEGA DNA (OMEGA Water DNA Kit, D5525) DNA (OMEGA Soil DNA Kit, D5625) 16S rrna V3-V4 : 341F (5 -CCTACGGGNG GCWGCAG-3 ) 805R (5 -GACTACHVGGGTATCTA ATCC-3 ) ( ) Illumina Miseq 1.3,, : : (1) Prinseq (PRINSEQ-lite 0.19.5) 3, ; (2) Flash (FLASH v1.2.7), barcode, ; (3) Prinseq (PRINSEQ-lite 0.19.5) : (1) Mothur (Schloss et al, 2009) Pre.cluster, 1/150; (2) SILVA, UCHIME (Edgar et al, 2011), 1.4 UCLUST (UCLUST v1.1.579) 97% OTUs (Operational Taxonomic Units, OTUs) Mothur Alpha, (Richness) ACE (ACE Index) Chao1 (Chaos1 Index) (Coverage) OTUs ( ) RDP classifier, 0.8 2 2.1 9 28977 42115, NCBI SRA, SRP052819, 9 26503 37825 ( 2) 表 2 9 个样品中序列分析 Tab.2 Analysis of sequence from nine samples DJ1 41340 41334 12 4441 36881 DJ2 40343 40336 4 2507 37825 DJ9 37490 37487 17 1826 35644 DJ5 38006 38003 0 4647 33356 DJ6 42115 42111 1 5112 36998 DJ11 38453 38453 2 7664 30787 DJ12 28977 28971 4 2464 26503 DJ13 30469 30465 33 2938 27494 DJ14 29102 29098 0 2082 27016 2.2 9

124 47 1502 5655 OTUs ( 1) 9 ACE Chao 1 5579 25014 3240 15231, DJ9 DJ11 DJ13 DJ14, DJ1 DJ2 DJ5 DJ6 DJ12 ( 2) 86% 97%, DJ9 DJ11 DJ13 DJ14, DJ9 DJ1 DJ2, DJ11 DJ5 DJ6, DJ14 DJ12 DJ13, DJ13, DJ2 DJ6, DJ13 DJ6 DJ2 1 OUT ACE Chao 1 Alpha Fig.1 The Alpha diversity of bacteria associated with samples, and the numbers of OTUs observed and predicted (ACE and Chao 1) Fig.2 2 Richness rarefaction plot from all samples 2.3, 9 26 69 105 249 890, Proteobacteria Bacteroidetes Chloroflexi Planctomycetes Cyanobacteria Acidobacteria Verrucomicrobia Firmicutes Actinobacteria ( 3), 17 9 1%, Caldiserica Archaea Tenericutes Fibrobacteres Synergistetes Nitrospira Elusimicrobia Armatimonadetes Chlamydiae - Deinococcus- Thermus Chlorobi Gemmatimonadetes Fusobacteria Lentisphaerae Aquificae Deferribacteres Spirochaetes DJ1 19, Bacteroidetes (52.03%), Proteobacteria (41.93%); DJ2 18, (63.90%), (24.50%); DJ9 (21 ), (58.05%), (12.20%); DJ5 (12 ), (88.21%), (10.89%); DJ6 15, (50.80%), (38.34%); DJ11 20, (59.92%), (18.92%); DJ12 15, (50.94%),

1 : 125 (46.16%); DJ13 20, (68.64%), (13.56%); DJ14 18, Cyanobacteria (41.07%), 36.96% 13.58%,,, 50.54% 99.91% Fig.3 3 Relative abundance of phylum-level bacterial communities in different samples 10 OUTs ( 3) 9 10 OTUs, DJ1 Cellulophaga (11.34%) Bacteroidetes (8.32%) Polaribacter (7.80% 1.24%) Glaciecola (6.66%) Rhodobacteraceae (3.96%) Psychroserpens (2.59% 1.71%) Proteobacteria (2.50%) Acinetobacter (1.47%); DJ2 (11.37%) Roseovarius (7.24%) Flavobacteriaceae (6.09% 2.70%) γ- Gammaproteobacteria (3.92% 2.14%) (3.18%) Agrococcus (2.89%) α- Aphlaproteobacteria (2.33%) Nisaea (2.17%); DJ9 Desulfopila (6.37%) γ- (2.68% 1.26%) Kofleria (2.53%) Sulfurovum (1.95%) Bacteria (1.82%) Pelobacter (1.69%) Bellilinea (1.47%) Desulfosarcina (1.14%) Actibacter (1.05%); DJ5 Vibrio (59.37% 1.20%) Sulfitobacter (3.91%) Bacteriovorax (2.64%) (2.62%) (2.37%) Glaciecola (2.12%) Flavobacteriales (0.91%) Tenacibaculum (0.83%); DJ6 (8.21% 7.81%) (5.56% 4.09%) Cyanobacteria (5.27%) (5.00%) Kordia (4.39%) Thalassobacter (4.29%) γ- (3.60%); DJ11 Sporacetigenium (7.31%) Desulfopila (3.34% 0.78%) Actibacter (2.67%) (2.48%) Loktanella (1.84%) Haliea (0.93% 0.85%) Neptunomonas (0.70%); DJ12 (25.48% 1.36%) (23.13% 2.78%) Glaciecola (3.07%) Lewinella (2.95%) Phaeobacter (1.92%) (1.05%) Kordia (0.84%) Thalassomonas (0.72%); DJ13 Alteromonas (2.63% 1.30%) Sedimenticola (2.54%) Euzebya (2.52%) Litoreibacter (2.50%) (1.92%) α- (1.09%) Nisaea (1.03%) Glaciecola (1.03%) Thalassobacter (0.96%); DJ14 (6.76% 0.64%) Loktanella (2.17%) Pseudoalteromonas (1.43%), DJ5 DJ12, 59.37% 1.20% 23.13% 2.78% 3 (Next Generation Sequence, NGS) 16S rrna [ (Woese, 1987)],,, (Wang et al, 2007) 454 (Herlemann et al, 2011; Xia et al, 2011) Illumina 454

126 47

1 : 127,, Illumina,, Illumina Miseq 250bp 300bp (Jeon et al, 2015), (Bell et al, 2013; Yang et al, 2015) Illumina Miseq 3, 9 26503 37825, 1502 5741 (OTUs), 9 (Li et al, 2010;, 2010;, 2010;, 2014), - 17, 9 1%, Illumina Miseq, 3 Lozupone (2007) (Li et al, 2010b;, 2015) γ- α- γ- Glaciecola γ-,,,,, (Ivanova et al, 2003; Payne et al, 2006), γ-, (Bakunina et al, 1999; Huber et al, 2004) α-,, CO 2 (, 2009), DNA, (Cottrell et al, 2000; O Sullivan et al, 2002),,, (, 1995), (Rosselló-Mora et al, 1999) 3,,, CO 2 O 2,, (, 2009),, (DJ14) 41.07%, (2006) (2014) V. splendidus V. tubiashii,,, (, 2013) (2007) 1, (2007) V. alginolyticus (2006), Deng (2009) 8,, Photobacterium Arthrobacter Staphylococcus, 4,,, (Thompson et al, 2004; Thompson et al, 2005),,,,,,,,

128 47 4,,,,,,, 3,,,,,, 2006.., 30(3): 377 382,,, 2007.., 13(6): 908 916,,, 2010. PCR-DGGE., 31(3): 119 122,,, 2009.., 49(3): 343 350,,, 2015. 16S rdna (Apostichopus japonicus)., 46(1): 197 205,,, 2010. PCR-DGGE., (1): 82 88,,, 2014.., 33(9): 562 568,,, 2014.., 10(4): 45 51,,, 2007. RH2., 31(4): 504 511,,, 1995.., 19(4): 343 349,,, 2013. (Apostichopus japonicus)., 44(3): 741 746,,, 2006.., 30(1): 118 123 Amann R I, Ludwig W, Schleifer K H, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1): 143 169 Auguet J-C, Barberan A, Casamayor E O, 2009. Global ecological patterns in uncultured Archaea. The International Society for Microbial Ecology Journal, 4(2): 182 190 Bakunina I, Shevchenko L S, Nedashkovskaia O I et al, 1999. Screening of marine bacteria for fucoidan hydrolases. Mikrobiologiia, 69(3): 370 376 Bell T H, Yergeau E, Maynard C et al, 2013. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. The International Society for Microbial Ecology Journal, 7(6): 1200 1210 Bordbar S, Anwar F, Saari N, 2011. High-value components and bioactives from sea cucumbers for functional foods A review. Marine Drugs, 9(12): 1761 1805 Caporaso J G, Lauber C L, Walters W A et al, 2011. Global patterns of 16S rrna diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(S1): 4516 4522 Cottrell M T, Kirchman D L, 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga- Flavobacter cluster consuming low- and high-molecularweight dissolved organic matter. Applied and Environmental Microbiology, 66(4): 1692 1697 Deng H, He C B, Zhou Z C et al, 2009. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture, 287(1 2): 18 27 Edgar R C, Haas B J, Clemente J C et al, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194 2200 Herlemann D P, Labrenz M, Jürgens K et al, 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The International Society for Microbial Ecology Journal, 5(10): 1571 1579 Huber I, Spanggaard B, Appel K F et al, 2004. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 96(1): 117 132 Hugenholtz P, Hooper S D, Kyrpides N C, 2009. Focus: Synergistetes. Environmental Microbiology, 11(6): 1327 1329 Ivanova E P, Sawabe T, Zhukova N V et al, 2003. Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Systematic and Applied Microbiology, 26(2): 293 301 Jeon Y-S, Park S-C, Lim J et al, 2015. Improved pipeline for reducing erroneous identification by 16S rrna sequences using the Illumina Miseq platform. Journal of Microbiology, 53(1): 60 69 Li H, Qiao G, Li Q et al, 2010a. Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infecting sea cucumber, Apostichopus japonicus. Journal of Fish Diseases, 33(11): 865 877 Li Q F, Zhang Y, Juck D et al, 2010b. Phylogenetic analysis of bacterial communities in the shrimp and sea cucumber aquaculture environment in northern China by culturing and

1 : 129 PCR-DGGE. Aquaculture International, 18(6): 977 990 Lozupone C A, Knight R, 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11436 11440 Luo P, Hu C Q, Xie Z Y et al, 2006. PCR-DGGE analysis of bacterial community composition in brackish water Litopenaeus vannamei culture system. Journal of Tropical Oceanography, 25(2): 49 53 O Sullivan L A, Weightman A J, Fry J C, 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Applied and Environmental Microbiology, 68(1): 201 210 Paerl H W, Dyble J, Moisander P H et al, 2003. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiology Ecology, 46(3): 233 246 Payne M S, Hall M R, Bannister R et al, 2006. Microbial diversity within the water column of a larval rearing system for the ornate rock lobster (Panulirus ornatus). Aquaculture, 258(1 4): 80 90 Purcell S W, Hair C A, Mills D J, 2012. Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture, 368 369: 68 81 Ren G D, Ren W J, Teng Y T et al, 2015. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Frontiers in Microbiology, 6: 22 Rosselló-Mora R, Aman R, 2001. The species concept for prokaryotes. FEMS Microbiology Reviews, 25(1): 39 67 Rosselló-Mora R, Thamdrup B, Schäfer H et al, 1999. The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Systematic and Applied Microbiology, 22(2): 237 248 Schloss P D, Westcott S L, Ryabin T et al, 2009. Introducing mothur: open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537 7541 Thompson F L, Iida T, Swings J, 2004. Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68(3): 403 431 Thompson J R, Pacocha S, Pharino C et al, 2005. Genotypic diversity within a natural coastal bacterioplankton population. Science, 307(5713): 1311 1313 Wang Q, Garrity G M, Tiedje J M et al, 2007. Naïve Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16): 5261 5267 Wang Y G, Zhang C Y, Rong X J et al, 2005. Diseases of cultured sea cucumber, Apostichopus japonicus, in China. FAO Fisheries Technical Paper, 297 310 Woese C R, 1987. Bacterial evolution. Microbiological Reviews, 51(2): 221 271 Xia W W, Zhang C X, Zeng X W et al, 2011. Autotrophic growth of nitrifying community in an agricultural soil. The International Society for Microbial Ecology Journal, 5(7): 1226 1236 Yang Y Y, Wang Z, He T et al, 2015. Sediment Bacterial Communities Associated with Anaerobic Biodegradation of Bisphenol A. Microbial Ecology, 70(1): 97 104 Youssef N, Sheik C S, Krumholz L R et al, 2009. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rrna gene-based environmental surveys. Applied and Environmental Microbiology, 75(16): 5227 5236 APPLICATION OF HIGH-THROUGHPUT SEQUENCING FOR ANALYZING BACTERIAL COMMUNITIES IN EARTHEN PONDS OF SEA CUCUMBER AQUACULTURE IN NORTHERN CHINA DOU Yan, ZHAO Xiao-Wei, DING Jun, HE Peng (Key Laboratory of Mariculture & Stock Enhancement in North China s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China) Abstract Sea cucumber Apostichopus japonicus has become an economically valuable holothurian species because of their anti-tumor properties and good nutritional values. We applied high-throughput sequencing to explore bacterial community in earthen aquaculture ponds of the sea cucumber in Dalian, North China. For nine samples collected, the number of effective sequences ranged 26503 37825, and they could be classified into 1502 5741 operational taxonomic units. Results show great bacterial diversities in the aquaculture. The estimated richness and diversity indices were higher in sediment samples than those in water samples. In total, 26 phyla were identified, among which Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, Cyanobacteria, Acidobacteria, Verrucomicrobia, Firmicutes, and Actinobacteria were commonly reported, and other 17 were firstly detected and rarely reported. Despite the differences in microbe composition, Proteobacteria and Bacteroidetes (50.54% 99.91%) were the dominant phyla in all samples. Key words sea cucumber Apostichopus japonicus; high-throughput sequencing; bacterial communities