Exact calculation for AB-phase effective potential via supersymmetric localization

Similar documents
Polymer Theory: Freely Jointed Chain

Contact interactions in string theory and a reformulation of QED

Loop Integrands from Ambitwistor Strings

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors:

GEOMETRY HW (t, 0, e 1/t2 ), t > 0 1/t2, 0), t < 0. (0, 0, 0), t = 0

Quasi-stationary-states in Hamiltonian mean-field dynamics

S[Ψ]/V 26. Ψ λ=1. Schnabl s solution. 1 2π 2 g 2

Math 54. Selected Solutions for Week 10

Loop Amplitudes from Ambitwistor Strings

Aspetti della fisica oltre il Modello Standard all LHC

Lefschetz-thimble path integral and its physical application

The form factor program a review and new results

Lefschetz-thimble path integral for solving the mean-field sign problem

Nobuhito Maru (Kobe)

Exact results for Wilson loops in N = 4 SYM

Math 322. Spring 2015 Review Problems for Midterm 2

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31


BSM physics and Dark Matter

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Model building and Lie point symmetries

Math Double Integrals in Polar Coordinates

Preliminary Exam 2018 Solutions to Morning Exam

arxiv:hep-ph/ v1 11 Jan 2001

Math 1B Calculus Test 3 Spring 10 Name Write all responses on separate paper. Show your work for credit.

Kontsevich integral in topological models of gravity

Baryon Configurations in the UV and IR Regions of Type 0 String Theory

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works

PAPER 51 ADVANCED QUANTUM FIELD THEORY

QFT Perturbation Theory

Half BPS solutions in type IIB and M-theory

Name: Answer Key David Arnold. Math 50B Integral Calculus May 13, Final Exam

General scan in flavor parameter space in the models with vector quark doublets and an enhancement in B X s γ process

Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Near BPS Wilson loop in AdS/CFT Correspondence

Qualification Exam: Mathematical Methods

Subdiffusion in a nonconvex polygon

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

Sinusoidal Steady State Analysis (AC Analysis) Part II

Solution set #7 Physics 571 Tuesday 3/17/2014. p 1. p 2. Figure 1: Muon production (e + e µ + µ ) γ ν /p 2

2 Induced LFV in the SUSY see-saw framework

5.3 Surface Theory with Differential Forms

8.821 String Theory Fall 2008

Emergent Gauge Theory

`Anomalous dimensions for conserved currents and Noether s Second Theorem

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

ENGIN 211, Engineering Math. Laplace Transforms

Topic 4 Notes Jeremy Orloff

Non-relativistic AdS/CFT

Surfaces of Arbitrary Constant Negative Gaussian Curvature and Related Sine-Gordon Equations

ADVANCED QUANTUM FIELD THEORY

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

CHAPTER 71 NUMERICAL INTEGRATION

Information geometry for bivariate distribution control

Honors Differential Equations

PHY 396 K. Solutions for problem set #11. Problem 1: At the tree level, the σ ππ decay proceeds via the Feynman diagram

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

QFT Perturbation Theory

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

EllipticTheta2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

UNIVERSITY OF DUBLIN

The Phase Diagram of the BMN Matrix Model

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

G P P (A G ) (A G ) P (A G )

Microstructure and Particle-Phase Stress in a Dense Suspension

Amplitudes beyond four-dimensions

Srednicki Chapter 24

MTH 252 Final Exam No Calc Portion Winter Term x

General Relativity and Differential

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

PoS(QFTHEP2011)052. Self-energy corrections to the MSSM finite-temperature Higgs potential

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS

S Leurent, V. Kazakov. 6 July 2010

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Introduction to Orientifolds.

Holographic Entanglement Entropy for Surface Operators and Defects

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Branching Processes II: Convergence of critical branching to Feller s CSB

One side of each sheet is blank and may be used as scratch paper.

The Unifying Dark Fluid Model

Conserved Quantities and the Evolution of Perturbations in Lemaître-Tolman-Bondi Cosmology

Beyond Standard Model Effects in Flavour Physics: p.1

and Localization Kazutoshi Ohta (Meiji Gakuin University)

Two models with extra Higgs doublets and Axions

Lecturer: Bengt E W Nilsson

Tachyon Condensation in String Theory and Field Theory

University College London. Frank Deppisch. University College London

SUSY effects in B-decays

Spinning strings and QED

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

Math 265 (Butler) Practice Midterm III B (Solutions)

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

Spin observables for polarizing antiprotons. Donie O Brien

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture #

Radiation from the non-extremal fuzzball

Problem Set 1 Classical Worldsheet Dynamics

Transcription:

Exact calculation for AB-phase effective potential via supersymmetric localization

Exact calculation for AB-phase effective potential via supersymmetric localization

Todayʼs concern is purely theoretical...

M S 1

M S 1

F M MN =0 S 1

F M MN =0 S 1 A µ =0 A S 1 = θ

A µ =0 M S 1 A S 1 = θ D(A + θ)e S(A+θ) = dθ DAe S(A+θ) = dθe Γ(θ)

D(A + θ)e S(A+θ) = dθ DAe S(A+θ) = dθe Γ(θ)

D(A + θ)e S(A+θ) = dθ DAe S(A+θ) = dθe Γ(θ) V eff = V tree eff + V 1 loop eff + V 2 loop eff +...

SU(3) D(A + θ)e S(A+θ) = dθ DAe S(A+θ) arxiv:hep-ph/0504272 = dθe Γ(θ) V eff = V tree eff + V 1 loop eff + V 2 loop eff +...

D(A + θ)e S(A+θ) = dθ DAe S(A+θ) = dθe Γ(θ)

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

D(A + θ)e S(A+θ) P R = dθ DAe S(A+θ) P R = dθe Γ(θ) P R arxiv:0904.1353 P R

A µ λ λ σ D Mass:k d Z(t) =0 dt

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

β

β lim β 0 β =

lim β 0 β =

lim β 0 β =

lim β 0 β =

lim β 0 β =

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

A µ λ λ σ D Mass:k

A µ λ λ σ D

A µ λ λ σ D

A µ λ σ D λ µ = 1 2 γ µγ 3

A µ λ σ λ δ S SCS =0 δ η S SCS =0 S SCS = 1 4π D d 3 x 1 gtr g µνλ (A µ ν A λ + 2i 3 A µa ν A λ ) λ λ +2Dσ

A µ λ σ λ δ S SCS =0 δ η S SCS =0 S SCS = 1 4π D d 3 x 1 gtr g µνλ (A µ ν A λ + 2i 3 A µa ν A λ ) λ λ +2Dσ

A µ λ σ D λ δ S SY M =0 δ η S SY M =0

A µ λ σ D λ δ S SY M =0 δ η S SY M =0 S SY M = δ V

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

d Z(t) =0 dt

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V d dt Z(t) = = = = D(fields) d dt eiks SCS tδ V D(fields)( δ V )e iks SCS tδ V D(fields)δ Ve iks SCS tδ V D(fields)(total derivative) =0

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( )

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( )

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( ) F MN =0 A µ =0 A S 1 = θ

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( ) A µ = a(m) A S 1 = θ

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( ) A µ = a(m) A S 1 = θ

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( ) = π/β ψ(m) m 1,m 2,...= 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j )

d dt Z(t) =0 Z(t) := fields : (A µ, λ, λ, σ,d) D(fields)e iks SCS ts SY M = δ V Z(1) =Z( ) = m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j )

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

V eff D(fields)e S = dθe V eff (θ)

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j ) lim β 0 β =

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j ) θ := βθ lim β 0 β =

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j ) β N π 0 d θ 1 d θ 2... e 2ki P m i θi cos 2( θ i θ j ) θ := βθ lim β 0 β =

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j ) β N π 0 d θ 1 d θ 2...e 2ki P m i θi cosh 0 = 1 cos 2( θ i θ j ) θ := βθ lim β 0 β =

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi sin 2 ( θ i θ j ) i<j

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi i<j sin 2 ( θ i θ j ) ψ(m) ψ(m, n, m n) =(δ m,0 + δ m,0 )(δ n,0 + δ n,0 ) V eff ( θ 1, θ 2 )

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi i<j sin 2 ( θ i θ j ) ψ(m) ψ(m, n, m n) =(δm,1 + δ m, 1 )(δ n,1 + δ n, 1 ) V eff ( θ 1, θ 2 )

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi i<j sin 2 ( θ i θ j ) ψ(m) ψ(m, n, m n) =1 V eff ( θ 1, θ 2 ) e 2πixn = δ(x p) n= p=

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi i<j sin 2 ( θ i θ j ) ψ(m) ψ(m, n, m n) =1 V eff ( θ 1, θ 2 ) 2 θ 1 + θ 2 = 2π k p, θ1 +2 θ 2 = 2π k q, p, q Z

V eff D(fields)e S = dθe V eff (θ) m 1,m 2,...= ψ(m) π 0 d θ 1 d θ 2...e 2ki P m i θi i<j sin 2 ( θ i θ j ) ψ(m) ψ(m, n, m n) =1 V eff ( θ 1, θ 2 ) 2 θ 1 + θ 2 = 2π k p, θ1 +2 θ 2 = 2π k q, p, q Z

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

P 3

P 3

P 3

P 3

P 3

P 3

P 3

P 3 δ P 3 =0

P 3 δ P 3 =0

P 3 δ P 3 =0

P 3 P 3 = m 1,m 2,...= ψ(m) π/β 0 dθ 1 dθ 2...e 2ki P m i θ i β i<j cosh β(m i m j ) cos 2β(θ i θ j ) Tr Rn (2βiθ + βm)

V eff D(fields)e S = dθe V eff (θ) P 3 A µ λ λ σ D d Z(t) =0 dt Mass:k

P 3 ψ(m, n, m n) =(δ m,1 + δ m, 1 )(δ n,1 + δ n, 1 ) k =4 2 θ 1 + θ 2 = 2π k p, θ 1 +2 θ 2 = 2π k q, p, q Z ψ(m, n, m n) =1

P 3

P 3 arxiv:0904.1353

P 3 ψ(m, n, m n) =(δ m,1 + δ m, 1 )(δ n,1 + δ n, 1 ) k =4 2 θ 1 + θ 2 = 2π k p, θ 1 +2 θ 2 = 2π k q, p, q Z ψ(m, n, m n) =1

P 3

P 3

P 3 ψ(m, n, m n) =(δ m,1 + δ m, 1 )(δ n,1 + δ n, 1 ) k =4 2 θ 1 + θ 2 = 2π k p, θ 1 +2 θ 2 = 2π k q, p, q Z ψ(m, n, m n) =1