Introduction to topological insulators. Jennifer Cano

Similar documents
Symmetry, Topology and Phases of Matter

Introductory lecture on topological insulators. Reza Asgari

Topological Insulators and Superconductors

Organizing Principles for Understanding Matter

Topological Insulators

arxiv: v1 [cond-mat.other] 20 Apr 2010

Topological Phases of Matter Out of Equilibrium

Topological insulators

Topological insulators. Pavel Buividovich (Regensburg)

Effective Field Theories of Topological Insulators

Single particle Green s functions and interacting topological insulators

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators II

Topological Insulators

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

A Short Introduction to Topological Superconductors

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

The Quantum Spin Hall Effect

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Topological Defects inside a Topological Band Insulator

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

Topological Insulators in 3D and Bosonization

Topological nonsymmorphic crystalline superconductors

Topological insulators

POEM: Physics of Emergent Materials

5 Topological insulator with time-reversal symmetry

POEM: Physics of Emergent Materials

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological insulator (TI)

arxiv: v2 [cond-mat.mes-hall] 11 Oct 2016

Floquet theory of photo-induced topological phase transitions: Application to graphene

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Topological insulator with time-reversal symmetry

Exploring topological states with cold atoms and photons

Modern Topics in Solid-State Theory: Topological insulators and superconductors

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Lecture notes on topological insulators

Quantitative Mappings from Symmetry to Topology

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

KITP miniprogram, Dec. 11, 2008

Measuring many-body topological invariants using polarons

Room temperature topological insulators

Chern number and Z 2 invariant

Basics of topological insulator

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Recent developments in topological materials

Topological Physics in Band Insulators. Gene Mele Department of Physics University of Pennsylvania

Les états de bord d un. isolant de Hall atomique

SSH Model. Alessandro David. November 3, 2016

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Quantum Quenches in Chern Insulators

Symmetry Protected Topological Insulators and Semimetals

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016

Abelian and non-abelian gauge fields in the Brillouin zone for insulators and metals

3.15. Some symmetry properties of the Berry curvature and the Chern number.

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Introduction to topological insulators

Field Theory Description of Topological States of Matter

Lecture III: Topological phases

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Buns, doughnuts, pretzels, physics, and math.

Topology and the Classification of Matter. New Physics Hidden in Plain Sight

Dirac fermions in condensed matters

Classification of topological quantum matter with reflection symmetries

Antiferromagnetic topological insulators

Adiabatic particle pumping and anomalous velocity

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Dirac semimetal in three dimensions

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Time Reversal Invariant Ζ 2 Topological Insulator

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Floquet Topological Insulators and Majorana Modes

v. Tε n k =ε n k T r T = r, T v T = r, I v I = I r I = v. Iε n k =ε n k Berry curvature: Symmetry Consideration n k = n k

Topological invariants for 1-dimensional superconductors

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

From graphene to Z2 topological insulator

Topological Superconductivity and Superfluidity

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Emergent topological phenomena in antiferromagnets with noncoplanar spins

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Draft Lecture II notes for Les Houches 2014

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

arxiv: v4 [math-ph] 24 Dec 2016

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Topological states of matter in correlated electron systems

Introduction to topological insulator

Topological Insulators on the Ruby Lattice with Rashba Spin-Orbit Coupling

A pedagogic review on designing model topological insulators

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 11 Jul 2007

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Transcription:

Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010

What is an insulator? No low-energy excitations Electrical resistor

<latexit sha1_base64="sjsgrjcrqyegx0vl7sd2dz8djzg=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0le0gnrfi8v7qe0owy2k3bpzhn2n0ij/qlepcji1v/kzx/jts1bwx8mpn6bywzekaiujet+o4wv1bx1jejmawt7z3evvh/q1hgqgdzylglvdqhgwsu2ddcc24lcggucw8hoeuq3nlbphsthm07qj+ha8pazaqz0cno77zurbtwdgswtlycvyfhvlb+6/zileurdbnw647mj8toqdgccj6vuqjghbeqh2lfu0gi1n81onzatq/rjgctb0pcz+nsio5hw4yiwnre1q73otcx/ve5qwks/4zjjduo2xxsmgpiytp8mfa6qgtg2hdlf7a2edamiznh0sjyeb/hlzdi8q3pu1bs/r9su8jikcathcaoexean7qaodwawggd4htdhoc/ou/mxby04+cwh/ihz+qpdw42c</latexit> <latexit sha1_base64="sjsgrjcrqyegx0vl7sd2dz8djzg=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0le0gnrfi8v7qe0owy2k3bpzhn2n0ij/qlepcji1v/kzx/jts1bwx8mpn6bywzekaiujet+o4wv1bx1jejmawt7z3evvh/q1hgqgdzylglvdqhgwsu2ddcc24lcggucw8hoeuq3nlbphsthm07qj+ha8pazaqz0cno77zurbtwdgswtlycvyfhvlb+6/zileurdbnw647mj8toqdgccj6vuqjghbeqh2lfu0gi1n81onzatq/rjgctb0pcz+nsio5hw4yiwnre1q73otcx/ve5qwks/4zjjduo2xxsmgpiytp8mfa6qgtg2hdlf7a2edamiznh0sjyeb/hlzdi8q3pu1bs/r9su8jikcathcaoexean7qaodwawggd4htdhoc/ou/mxby04+cwh/ihz+qpdw42c</latexit> <latexit sha1_base64="sjsgrjcrqyegx0vl7sd2dz8djzg=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0le0gnrfi8v7qe0owy2k3bpzhn2n0ij/qlepcji1v/kzx/jts1bwx8mpn6bywzekaiujet+o4wv1bx1jejmawt7z3evvh/q1hgqgdzylglvdqhgwsu2ddcc24lcggucw8hoeuq3nlbphsthm07qj+ha8pazaqz0cno77zurbtwdgswtlycvyfhvlb+6/zileurdbnw647mj8toqdgccj6vuqjghbeqh2lfu0gi1n81onzatq/rjgctb0pcz+nsio5hw4yiwnre1q73otcx/ve5qwks/4zjjduo2xxsmgpiytp8mfa6qgtg2hdlf7a2edamiznh0sjyeb/hlzdi8q3pu1bs/r9su8jikcathcaoexean7qaodwawggd4htdhoc/ou/mxby04+cwh/ihz+qpdw42c</latexit> <latexit sha1_base64="sjsgrjcrqyegx0vl7sd2dz8djzg=">aaab6nicbvbns8naej3ur1q/qh69lbbbu0le0gnrfi8v7qe0owy2k3bpzhn2n0ij/qlepcji1v/kzx/jts1bwx8mpn6bywzekaiujet+o4wv1bx1jejmawt7z3evvh/q1hgqgdzylglvdqhgwsu2ddcc24lcggucw8hoeuq3nlbphsthm07qj+ha8pazaqz0cno77zurbtwdgswtlycvyfhvlb+6/zileurdbnw647mj8toqdgccj6vuqjghbeqh2lfu0gi1n81onzatq/rjgctb0pcz+nsio5hw4yiwnre1q73otcx/ve5qwks/4zjjduo2xxsmgpiytp8mfa6qgtg2hdlf7a2edamiznh0sjyeb/hlzdi8q3pu1bs/r9su8jikcathcaoexean7qaodwawggd4htdhoc/ou/mxby04+cwh/ihz+qpdw42c</latexit> E<latexit sha1_base64="o1sexvfquekbmq6sr1ntvhgjrzs=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0le0gnrbi8t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx7cxvp6hspjypzpkgh9gh5cfn1fipcdcvv9yqowdzjv5okpcj3i9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukdvh13krxukzubvi4inacp3aohlxbde6hdk1ggpamr/dmpdovzrvzswgtopnmmfyb8/kdmo2myq==</latexit> <latexit sha1_base64="o1sexvfquekbmq6sr1ntvhgjrzs=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0le0gnrbi8t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx7cxvp6hspjypzpkgh9gh5cfn1fipcdcvv9yqowdzjv5okpcj3i9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukdvh13krxukzubvi4inacp3aohlxbde6hdk1ggpamr/dmpdovzrvzswgtopnmmfyb8/kdmo2myq==</latexit> <latexit sha1_base64="o1sexvfquekbmq6sr1ntvhgjrzs=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0le0gnrbi8t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx7cxvp6hspjypzpkgh9gh5cfn1fipcdcvv9yqowdzjv5okpcj3i9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukdvh13krxukzubvi4inacp3aohlxbde6hdk1ggpamr/dmpdovzrvzswgtopnmmfyb8/kdmo2myq==</latexit> <latexit sha1_base64="o1sexvfquekbmq6sr1ntvhgjrzs=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0le0gnrbi8t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcopenumwyywmsqe1cngktsgm4edhkfnaoetopx7cxvp6hspjypzpkgh9gh5cfn1fipcdcvv9yqowdzjv5okpcj3i9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukdvh13krxukzubvi4inacp3aohlxbde6hdk1ggpamr/dmpdovzrvzswgtopnmmfyb8/kdmo2myq==</latexit> <latexit sha1_base64="x4qaxe9wdh3gcr1ouhrpxnirre8=">aaab9hicbvdlsgnbejz1gemr6thlyba8hv0r9bj04jgceub2cbot3mtipnaz2uby8h1epcji1y/x5t84sfagiqunrvu33v1xypmxvv/tra1vbg5tl3bku3v7b4evo+owuzmm0kskk92jiqhojdqtsxw6qqyiyg7tehq389tj0iyp+wgnkuscdcrlgcxwsve4jikolyab6dfeperx/dnwkgkkukufgr3kv9hxnbmglexemg7gpzbkibamcpiww8xasuiidkdrqcqctjtpj57ic6f0cak0k2nxxp09krnhzeterlmqoztl3kz8z+tmnrmjcibtzikki0vjxrfvejya7jmn1pkji4rq5m7fdeg0odblvhyhbmsvr5lwzs3wa8hdvbv+w8rrqqfodf2gaf2jorphddrefd2hz/sk3ryx9+k9ex+l1jwvmdlbf+b9/gdpupic</latexit> <latexit sha1_base64="x4qaxe9wdh3gcr1ouhrpxnirre8=">aaab9hicbvdlsgnbejz1gemr6thlyba8hv0r9bj04jgceub2cbot3mtipnaz2uby8h1epcji1y/x5t84sfagiqunrvu33v1xypmxvv/tra1vbg5tl3bku3v7b4evo+owuzmm0kskk92jiqhojdqtsxw6qqyiyg7tehq389tj0iyp+wgnkuscdcrlgcxwsve4jikolyab6dfeperx/dnwkgkkukufgr3kv9hxnbmglexemg7gpzbkibamcpiww8xasuiidkdrqcqctjtpj57ic6f0cak0k2nxxp09krnhzeterlmqoztl3kz8z+tmnrmjcibtzikki0vjxrfvejya7jmn1pkji4rq5m7fdeg0odblvhyhbmsvr5lwzs3wa8hdvbv+w8rrqqfodf2gaf2jorphddrefd2hz/sk3ryx9+k9ex+l1jwvmdlbf+b9/gdpupic</latexit> <latexit sha1_base64="x4qaxe9wdh3gcr1ouhrpxnirre8=">aaab9hicbvdlsgnbejz1gemr6thlyba8hv0r9bj04jgceub2cbot3mtipnaz2uby8h1epcji1y/x5t84sfagiqunrvu33v1xypmxvv/tra1vbg5tl3bku3v7b4evo+owuzmm0kskk92jiqhojdqtsxw6qqyiyg7tehq389tj0iyp+wgnkuscdcrlgcxwsve4jikolyab6dfeperx/dnwkgkkukufgr3kv9hxnbmglexemg7gpzbkibamcpiww8xasuiidkdrqcqctjtpj57ic6f0cak0k2nxxp09krnhzeterlmqoztl3kz8z+tmnrmjcibtzikki0vjxrfvejya7jmn1pkji4rq5m7fdeg0odblvhyhbmsvr5lwzs3wa8hdvbv+w8rrqqfodf2gaf2jorphddrefd2hz/sk3ryx9+k9ex+l1jwvmdlbf+b9/gdpupic</latexit> <latexit sha1_base64="x4qaxe9wdh3gcr1ouhrpxnirre8=">aaab9hicbvdlsgnbejz1gemr6thlyba8hv0r9bj04jgceub2cbot3mtipnaz2uby8h1epcji1y/x5t84sfagiqunrvu33v1xypmxvv/tra1vbg5tl3bku3v7b4evo+owuzmm0kskk92jiqhojdqtsxw6qqyiyg7tehq389tj0iyp+wgnkuscdcrlgcxwsve4jikolyab6dfeperx/dnwkgkkukufgr3kv9hxnbmglexemg7gpzbkibamcpiww8xasuiidkdrqcqctjtpj57ic6f0cak0k2nxxp09krnhzeterlmqoztl3kz8z+tmnrmjcibtzikki0vjxrfvejya7jmn1pkji4rq5m7fdeg0odblvhyhbmsvr5lwzs3wa8hdvbv+w8rrqqfodf2gaf2jorphddrefd2hz/sk3ryx9+k9ex+l1jwvmdlbf+b9/gdpupic</latexit> Not all insulators are the same: quantum Hall effect Electrons in a strong magnetic field B E F ~! c

<latexit sha1_base64="/ecato+vgjp179didgcwt14amtu=">aaaca3icbvdjsgnbeo2jw4zbqde9nabbu5wjirkiqs/ejgawsglo6vssjj0l3tvigaje/buvhhtx6k9482/sladnffdwek+kqnpejivgx/m2uguls8sr6dxm2vrg5pa9vvpryaw4lhkoq1xzmaypaiijqam1sahzpqlvr3858qv3olqig1scrnd0wtcqhcezgqll7/wo4s5pz2n+nfdoidxg0h82rn3ospaddxloghseufosjvouwvzxox3y2icauwra110nwmbcfaouyzhpxboixvusc3vda+adbibjh4b00cht2gmvqqdpwp09ktbf64hvmu6fyu/peipxp68ey6fqteqqxqgbnyzqxjjiseeb0lzqwfeodgfccxmr5t2mgectw8ae4m6+pe8q+zzr5nybk2zxyhphmuyta3jexhjgiuskleizcpjinskreboerbfr3fqytkas6cwu+qpr8we34jzo</latexit> <latexit sha1_base64="/ecato+vgjp179didgcwt14amtu=">aaaca3icbvdjsgnbeo2jw4zbqde9nabbu5wjirkiqs/ejgawsglo6vssjj0l3tvigaje/buvhhtx6k9482/sladnffdwek+kqnpejivgx/m2uguls8sr6dxm2vrg5pa9vvpryaw4lhkoq1xzmaypaiijqam1sahzpqlvr3858qv3olqig1scrnd0wtcqhcezgqll7/wo4s5pz2n+nfdoidxg0h82rn3ospaddxloghseufosjvouwvzxox3y2icauwra110nwmbcfaouyzhpxboixvusc3vda+adbibjh4b00cht2gmvqqdpwp09ktbf64hvmu6fyu/peipxp68ey6fqteqqxqgbnyzqxjjiseeb0lzqwfeodgfccxmr5t2mgectw8ae4m6+pe8q+zzr5nybk2zxyhphmuyta3jexhjgiuskleizcpjinskreboerbfr3fqytkas6cwu+qpr8we34jzo</latexit> <latexit sha1_base64="/ecato+vgjp179didgcwt14amtu=">aaaca3icbvdjsgnbeo2jw4zbqde9nabbu5wjirkiqs/ejgawsglo6vssjj0l3tvigaje/buvhhtx6k9482/sladnffdwek+kqnpejivgx/m2uguls8sr6dxm2vrg5pa9vvpryaw4lhkoq1xzmaypaiijqam1sahzpqlvr3858qv3olqig1scrnd0wtcqhcezgqll7/wo4s5pz2n+nfdoidxg0h82rn3ospaddxloghseufosjvouwvzxox3y2icauwra110nwmbcfaouyzhpxboixvusc3vda+adbibjh4b00cht2gmvqqdpwp09ktbf64hvmu6fyu/peipxp68ey6fqteqqxqgbnyzqxjjiseeb0lzqwfeodgfccxmr5t2mgectw8ae4m6+pe8q+zzr5nybk2zxyhphmuyta3jexhjgiuskleizcpjinskreboerbfr3fqytkas6cwu+qpr8we34jzo</latexit> <latexit sha1_base64="/ecato+vgjp179didgcwt14amtu=">aaaca3icbvdjsgnbeo2jw4zbqde9nabbu5wjirkiqs/ejgawsglo6vssjj0l3tvigaje/buvhhtx6k9482/sladnffdwek+kqnpejivgx/m2uguls8sr6dxm2vrg5pa9vvpryaw4lhkoq1xzmaypaiijqam1sahzpqlvr3858qv3olqig1scrnd0wtcqhcezgqll7/wo4s5pz2n+nfdoidxg0h82rn3ospaddxloghseufosjvouwvzxox3y2icauwra110nwmbcfaouyzhpxboixvusc3vda+adbibjh4b00cht2gmvqqdpwp09ktbf64hvmu6fyu/peipxp68ey6fqteqqxqgbnyzqxjjiseeb0lzqwfeodgfccxmr5t2mgectw8ae4m6+pe8q+zzr5nybk2zxyhphmuyta3jexhjgiuskleizcpjinskreboerbfr3fqytkas6cwu+qpr8we34jzo</latexit> Quantum Hall devices are not insulating!! h/e 2 = 25.8k Nobel Prize 1985 Klaus von Klitzing Data: Weis and von Klitzing, Phil. Trans. R. Soc. A 369, 3954 (2011)

Topological invariants do not change under smooth deformations Example 1: genus Example 2: Hall conductivity <latexit sha1_base64="vz9slf2mzitk4wivg6zdrbc8ot0=">aaab/xicbvdlssnafj3uv62v+ni5gsycq5ouqtdc0y0rqwaf0mywmu7aototmdmryyj+ihsxirj1p9z5n07bllt1wixdofdy7z1bzkjsjvntfrywl5zxiqultfwnzs17e6epokri0sari2q7qiowkkhdu81io5ye8ycrvjc8hputeyivjcsttmpicdqxnkqyasp59l5x0t5hfvaqjua5vcz31eobb5edijmbncdutsogr923v7q9ccecci0zuqrjorh2miq1xyymst1ekrjhieqtjqeccak8bhl9cb4apqfdsjosgk7u3xmz4kqlpdcdhombmvxg4n9ej9hhmzdreseacdxdfcym6gioo4a9kgnwldueyunnrrapkerym8bkjgr39uv50qxwxkfi3pyuaxd5hewwdw7aexdbkaibk1ahdydbi3ggr+dnerjerhfry9paspkzxfah1ucpxwgufw==</latexit> xy 2 = N e /h

Surface spectrum explains Hall conductivity E Bulk-edge correspondence EF x Landau levels bend up at edges Image: Hasan & Kane RMP Hall conductivity from bulk eigenstates: TKNN invariant (Thouless, Kohmoto, Nightingale, den Nijs PRL 1982)

Energy eigenstates in a crystal are Bloch wavefunctions Translation symmetry: Bloch s theorem: T (R) i = e ik R i i = e ik r u(k)i Brillouin zone contains distinct k ky π Eigenvalues of Hamiltonian form band structure H(k) u n (k)i = E n (k) u n (k)i -π -π π kx = ΔE Γ π kx Two band structures are topologically equivalent if they can be deformed into each other without closing energy gap

Berry phase Berry connection: A = ihu(k) r k u(k)i I Berry phase: C = C A dk Wave function phase ambiguity Berry phase defined mod 2π: u(k)i!e i (k) u(k)i A! A + r k (k) I C! C + C r k (k) dk 2 n Berry curvature: F = r k A gauge invariant!

Zak phase: Berry phase around Brillouin zone k=π/2 Zak PRL 62, 2747 (1989) Z 2 k=0 k=2π k=π = 0 ihu(k) @ k u(k)idk P = e I 2 i@ k! x k=3π/2 A(k)dk Polarization of infinite crystal defined mod e: - + - + - + - + P=e P=0 Differences in polarization are well-defined: Z P = @ t P (t)dt = e 2 ZZ dtdk r A Modern theory of polarization King-Smith & Vanderbilt PRB (1993) Resta Ferroelectrics 136, 51 (1992)

Berry phase in 1d: SSH model (Su, Schrieffer, Heeger PRL 1979) H = X i (t + )c A,i c B,i +(t )c A,i+1 c B,i +h.c. A, i A, i+1 E(k) > 0 B, i < 0 A, i B, i A, i+1 4 -π π k H(k) =d(k) dy dy d x (k) =(t + )+(t d y (k) =(t )sin(k) ) cos(k) dx dx d z (k) =0 Symmetry enforces dz(k)=0 < 0 Berry phase π > 0 Berry phase 0 Interpret difference in Berry phase as difference in polarization!!

Domain wall states (Su, Schrieffer, Heeger PRL 1979) > 0 < 0 Low-energy continuum theory: H =2 x tk y (k, t) Domain wall:! (x) k! i@ x δ(x) x Zero-energy state localized at domain wall: (Jackiw & Rebbi PRD 1976) (x) =e R x dx 0 2 (x 0 ) t 1 0 ψ(x) 2 x

t=0 Thouless charge pump (Thouless PRB 1983) t=t/2 t=t + + + + + + + + + + + + - - - - - - - - - - - - P = e/2 P = e/2 Integer charge pumped in one full cycle is a topological invariant: Z T Z T Z! 2 P = 0 @ t P (t)dt = 1 2 dt dkr A 0 0 Chern number e = ne Chern number is an integer topological invariant characterizing Bloch wavefunctions of two variables k t

Chern number = winding Berry phase 2 e P = Z T 0 @ t (t)dt = (T ) (0) = 2 n 2 n =1 (t) 0 0 t T t=0 t=t/2 t=t Practical way to compute Chern number

Integer quantum Hall: Laughlin flux argument 2. Faraday s law: generate electric field E = @ t 2 R I = 3. Hall conductance determines current Z T 4. Charge pumping: Q = xy @ t 0 I(t)dt = 1. Thread flux quantum xy h e Laughlin PRB 1981 (t = 0) = 0 (t = T )=h/e 5. Energy gap ) Q = ne Thouless pump! xy = n e2 h Comparison to TKNN invariant: n = 1 2 Z d 2 kr A kx ky Chern number with t ky

Chern number surface state Bulk diagnosis Topological invariant: TKNN or Chern number n = 1 2 Z d 2 kr A kx t or ky Bulk-edge correspondence If x-axis is time: 1d Thouless pump If x-axis is k: Laughlin argument Surface diagnosis

Bulk-edge correspondence Surface states are required but dispersion is determined by microscopics Conduction band Conduction band Conduction band EF EF EF Valence band Valence band Valence band n+ = # bands with positive slope that cross EF n- = # bands with negative slope that cross EF Chern number = n+ n-

Time-reversal symmetry 1 H(k) = H( k) 2 = I Degenerate Kramer s pairs at Time-reversal-invariant-momenta (TRIM) k=0, k=π Time-reversal forbids Chern number! conduction bands Surface state: Kramers pair conduction bands Two surface states, protected by time-reversal Conventional insulator valence bands valence bands valence bands valence bands Topological insulator Z2 topological invariant ν: even vs odd bands cross EF over half the BZ Fermion parity pump

Bulk Z2 invariant Kane & Mele PRL 95, 146802 (2005) BZ ky (0,π) (π,π) (0,0) (π,0) kx ( 1) = Y a 2TRIM Pf[w( a )] p Det[w( a )] = ±1 w mn (k) =hu k,m u k,n i Gauge invariant but must choose continuous gauge In practice, difficult to compute

Practical calculation of Z2 invariant: winding Berry phase π π -π -π ky 0 -π -π ky 0 Yu, Qi, Bernevig, Fang, Dai PRB 84, 075119 (2011) Soluyanov and Vanderbilt Phys. Rev. B 83, 235401 (2011) Berry phase imitates surface spectrum (proof: Fidkowski, Jackson, Klich PRL 2011) Z2Pack software package: Gresch, et al, PRB 95, 075146 (2017)

Easier computation of Z2 invariant with symmetry Spin conservation: quantum spin Hall effect Inversion symmetry Conventional insulator Z2 invariant given by product of inversion eigenvalues of occupied bands: Quantum spin Hall ( 1) = Y a 2TRIM Y i 2i ( a ) Fu & Kane PRB 76, 045302 (2007) Each spin has Chern number: n = -n ν = n mod 2 Kane & Mele PRL 95, 146802 (2005), Bernevig & Zhang PRL 96, 106802 (2006)

Quantum spin Hall effect in graphene with spin orbit coupling z = sublattice z = valley s z =spin Fig: Castro Neto, et al, RMP (2009) Three ways to open energy gap: 2 1. Sublattice potential (hbn) hbn z 2. Staggered flux Haldane PRL 1988 Haldane z z 3. Spin-orbit coupling Kane and Mele PRL 1995 SOC z z s z Breaks inversion symmetry Breaks time-reversal Quantum Hall effect Preserves all symmetries Quantum spin Hall effect

Quantum spin Hall in HgTe quantum wells Theory: Bernevig, Hughes, Zhang Science 2006 BHZ model CdTe HgTe CdTe d d<dc normal band order d>dc inverted (topological) band order dc = 6.4nm CdTe HgTe Band inversion at k=0

Experimental realization HgTe quantum wells Experiment: Konig, Wiedmann, Brune, Roth, Buhmann, Molenkamp, Qi, Zhang Science 2007 G=0, d<dc Conventional insulator G=2e2/h, d>dc Topological insulator Quantized conductance independent of sample width

Topological insulators in 3d Strong index ky Four Z2 indices: ( 0 ; 1, 2, 3 ) } Weak indices ky Refs: Fu, Kane, Mele PRL 2007 Moore, Balents PRB 2007 Roy PRB 2009 Ex: (1;000) kx Surface Brillouin zone kx Ex: (0;100) Bulk construction (not unique) k=0 plane is 2D TI; k=π is conventional Stacked 2D TIs

Topological insulators in 3d Bi1-xSbx Band gap ~.03eV Theory: Fu & Kane PRL 2007 Expt: Hsieh, et al, Nature 2008 Bi2Se3 Band gap ~.3eV Theory: Zhang, et al, Nat. Phys. 2009 Expt: Xia et al, Nat. Phys. 2009 Figures from Hasan & Kane RMP

What comes after time-reversal symmetry? 10-fold way classification Ryu, Schnyder, Furusaki, Ludwig, New J. Phys. (2010) Classified by time-reversal and charge-conjugation symmetries no symmetry Integer quantum Hall fermions w/ time-reversal 2d and 3d topological insulators (weak index not captured)