Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)

Similar documents
Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms

An Adaptive Multipreconditioned Conjugate Gradient Algorithm

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz

Toward black-box adaptive domain decomposition methods

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Master Thesis Literature Study Presentation

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers

Incomplete Cholesky preconditioners that exploit the low-rank property

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures

Domain Decomposition solvers (FETI)

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD

New constructions of domain decomposition methods for systems of PDEs

Deflated Krylov Iterations in Domain Decomposition Methods

On the choice of abstract projection vectors for second level preconditioners

A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM

Jae Heon Yun and Yu Du Han

9.1 Preconditioned Krylov Subspace Methods

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

Dirichlet-Neumann and Neumann-Neumann Methods

Overlapping Schwarz preconditioners for Fekete spectral elements

From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D

Contents. Preface... xi. Introduction...

Chapter 7 Iterative Techniques in Matrix Algebra

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multigrid absolute value preconditioning

A Balancing Algorithm for Mortar Methods

Construction of a New Domain Decomposition Method for the Stokes Equations

Substructuring for multiscale problems

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps

Parallel sparse linear solvers and applications in CFD

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

arxiv: v1 [math.na] 16 Dec 2015

A Balancing Algorithm for Mortar Methods

Uncertainty analysis of large-scale systems using domain decomposition

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Two-scale Dirichlet-Neumann preconditioners for boundary refinements

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

Conjugate Gradient Method

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

C. Vuik 1 R. Nabben 2 J.M. Tang 1

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

Architecture Solutions for DDM Numerical Environment

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning

Some Geometric and Algebraic Aspects of Domain Decomposition Methods

Various ways to use a second level preconditioner

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015

On deflation and singular symmetric positive semi-definite matrices

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

Lecture 17: Iterative Methods and Sparse Linear Algebra

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

WHEN studying distributed simulations of power systems,

Lecture 18 Classical Iterative Methods

On Iterative Substructuring Methods for Multiscale Problems

Open-source finite element solver for domain decomposition problems

Some Domain Decomposition Methods for Discontinuous Coefficients

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine

Notes on PCG for Sparse Linear Systems

Robust solution of Poisson-like problems with aggregation-based AMG

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Linear Solvers. Andrew Hazel

The All-floating BETI Method: Numerical Results

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Is there life after the Lanczos method? What is LOBPCG?

FETI domain decomposition method to solution of contact problems with large displacements

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

Preconditioning for Nonsymmetry and Time-dependence

DELFT UNIVERSITY OF TECHNOLOGY

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

arxiv: v1 [math.na] 28 Feb 2008

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Schwarz-type methods and their application in geomechanics

The Conjugate Gradient Method

THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS

ADDITIVE SCHWARZ FOR SCHUR COMPLEMENT 305 the parallel implementation of both preconditioners on distributed memory platforms, and compare their perfo

DELFT UNIVERSITY OF TECHNOLOGY

Solving Ax = b, an overview. Program

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Department of Computer Science, University of Illinois at Urbana-Champaign

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

c 2000 Society for Industrial and Applied Mathematics

Preconditioning Techniques Analysis for CG Method

Transcription:

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine Nicole Spillane (CNRS, CMAP, École Polytechnique) C. Bovet (ONERA), P. Gosselet (ENS Cachan), A. Parret Fréaud (SafranTech), D.J. Rixen (TU Munich), F.-X. Roux (ONERA) 17 novembre 2017 Séminaire du LJLL

Find u Rn s.t. Ku = f where I K is symmetric positive definite (spd) X I K= Kτ {τ Th } I All Kτ are symmetric positive semi-definite (spsd). Nicole Spillane (CNRS,CMAP) 2/29

Nicole Spillane (CNRS,CMAP) 3/29 Two observations about parallel linear solvers 1. Direct solvers are robust (but require a lot of memory). e.g., Cholesky factorization w/ forward backward substitutions K = L L u = L \ 2. Iterative solvers are naturally parallel (but not robust). e.g., Preconditioned Conjugate Gradient L f \ Error Bound (log scale) 10 1 10 1 10 3 10 5 10 7 κ = 10 κ = 100 κ = 1000 [ ] m u u m A κ 1 2, κ = λ max. u u 0 A κ + 1 λ min 10 9 0 20 40 60 80 100 Iterations

Nicole Spillane (CNRS,CMAP) 3/29 Two observations about parallel linear solvers 1. Direct solvers are robust (but require a lot of memory). e.g., Cholesky factorization w/ forward backward substitutions K = L L u = L \ 2. Iterative solvers are naturally parallel (but not robust). e.g., Preconditioned Conjugate Gradient L f \ Error Bound (log scale) 10 1 10 1 10 3 10 5 10 7 10 9 0 20 40 60 80 100 Iterations κ = 10 κ = 100 κ = 1000 [ ] m u u m A κ 1 2, κ = λ max. u u 0 A κ + 1 λ min Hybrid Direct/Iterative solvers should be both naturally parallel and robust e.g., Domain Decomposition

1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Balancing Domain Decomposition

Balancing Domain Decomposition (BDD) : Ku = f (K spd) Global Formulation Ω Γ Ω s Γ s J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3) :233 241, 1993. ( ) ( ) KΓΓ K ΓI u,γ = K IΓ BDD is a hybrid solver : K II It solves Au,Γ = b with PCG. u,i ( fγ f I Ku = f ) (boundaries) (interiors) u,i = K 1 II (f I K IΓ u,γ ) and (K ΓΓ K ΓI K 1 II K IΓ ) u,γ = f Γ K ΓI K 1 II f I. }{{}}{{} :=A :=b Within each iteration, a direct solve is performed : K 1 II. Nicole Spillane (CNRS,CMAP) 4/29

Nicole Spillane (CNRS,CMAP) 5/29 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N.

Nicole Spillane (CNRS,CMAP) 5/29 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N. The operator A is a sum of local contributions : S s := K s Γ N s Γ K s s Γ s I (K s s I s I s) 1 K s I s Γ s A = R s S s R s R s s=1 Γ s Γ R s

Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s Good preconditioner : good approximation of A 1, cheap to compute. A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N. The operator A is a sum of local contributions : S s := K s Γ N s Γ K s s Γ s I (K s s I s I s) 1 K s I s Γ s A = R s S s R s R s s=1 Γ s Γ R s The preconditioner H also : N H := R s D s S s 1 D s R s, with s=1 N R s D s R s = I. Nicole Spillane (CNRS,CMAP) 5/29 s=1

Nicole Spillane (CNRS,CMAP) 6/29 Some remarks The kernel of S s is handled by deflation and H := N R s D s S s D s R s s=1 ( : pseudoinverse). Eigenvalues of the preconditioned operator satisfy λ min (HA) 1 as a consequence of : N s=1 Rs D s R s = I. The choice of the scaling matrices D s is important (problems with heterogeneous coefficients or subdomains)

Nicole Spillane (CNRS,CMAP) 7/29 Elasticity with homogeneous subdomains N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = 10 12. Young s modulus E Regular Partition Error (log scale) 10 0 10 1 10 2 10 3 10 4 10 5 10 6 0 2 4 6 8 10 12 Iterations

Lack of Robustness : Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = 10 12. Young s modulus E Error (log scale) 10 0 10 1 10 2 10 3 10 4 Metis Partition 10 5 10 6 Three obectives for new DD methods : 0 20 40 60 80 100 120 140 Iterations Reliability : robustness and scalability. Efficiency : adapt automatically to difficulty. Simplicity : non invasive implementation. Nicole Spillane (CNRS,CMAP) 8/29

1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD GenEO Coarse Space

Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) General convergence result for PCG : [ ] m x x m A κ 1 2, where κ = λ max(ha) x x 0 A κ + 1 λ min (HA).

Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) Convergence result for BDD [Mandel, Tezaur, 1996] : [ ] m x x m A λmax 1 2, because λ min 1. x x 0 A λmax + 1

Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) Convergence result for BDD [Mandel, Tezaur, 1996] : [ ] m x x m A λmax 1 2, because λ min 1. x x 0 A λmax + 1 Deflation strategy [Nicolaides, 1987] [Dostál, 1988] (i) Compute (λ k, x k ) such that HAx k = λ k x k. (ii) Define U := {x k; λ k τ} (span(u) is the coarse space) (I Π) : A-orthogonal projection onto span(u). (iii) Solve Π Ax = Π b }{{} DD solver and Guaranteed Convergence : x x m A x x 0 A 2 (I Π )Ax = (I Π) b. }{{} direct solver [ ] m τ 1 τ + 1 BUT too expensive to compute.

GenEO coarse space for BDD (Generalized Eigenvalues in the Overlaps) 1. In each subdomain we want x s, S s x s τ x s, R s AR s x s for all x s so we solve : ) N S s x s k = λs k Rs AR s x s k (A, = R s S s R s. 2. Let the coarse space be } U := {R s x s k ; s = 1,, N and λs k τ ( w/ e.g. τ = 0.1). 3. Let (I Π) be the A-orthogonal projection onto span(u) Ax = b Π Ax = Π b }{{} DD solver and s=1 (I Π )Ax = (I Π) b. }{{} direct solver Guaranteed convergence : [ ] m x x m A N /τ 1 2, N : number of neighbours. x x 0 A N /τ + 1 Nicole Spillane (CNRS,CMAP) 10/29

Numerical Illustration : Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = 10 12, τ = 0.1 Young s modulus E Metis Partition Error (log scale) 10 0 10 1 10 2 10 3 10 4 10 5 10 6 BDD BDD + GenEO 0 20 40 60 80 100 120 140 Iterations Size of the coarse space : n 0 = 349 including 212 rigid body modes. N. S. and D. J. Rixen. Int. J. Numer. Meth. Engng., 2013. N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Numer. Math., 2014. Nicole Spillane (CNRS,CMAP) 11/29

1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Multipreconditioned BDD

Nicole Spillane (CNRS,CMAP) 12/29 What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods,

Nicole Spillane (CNRS,CMAP) 12/29 What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods, or multipreconditioning! MPCG : Minimize x x i+1 A over x i + span(h 1 r i,, H N r i ) where H 1,..., H N are N preconditioners. R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J. Matrix Anal. Appl., 2006. Very natural for DD : one preconditioner per subdomain H = N } R s D s S {{ s 1 D s R } s. :=H s s=1

What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods, or multipreconditioning! MPCG : Minimize x x i+1 A over x i + span(h 1 r i,, H N r i ) where H 1,..., H N are N preconditioners. D. J. Rixen. Substructuring and Dual Methods in Structural Analysis. PhD thesis, 1997. R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J. Matrix Anal. Appl., 2006. C. Greif, T. Rees, and D. Szyld. MPGMRES : a generalized minimum residual method with multiple preconditioners. Technical report, 2011 (now published in SeMA Journal). C. Greif, T. Rees, and D. Szyld. Additive Schwarz with variable weights. DD21 proceedings, 2014. P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S. Simultaneous FETI and block FETI...International Journal for Numerical Methods in Engineering, 2015. Nicole Spillane (CNRS,CMAP) 12/29

Multipreconditioned CG for Ax = b prec. by {H s } s=1,,n A, H R n n spd, MPCG H = N s=1 Hs, where H s spsd. 1 x 0 given ; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0 H N r 0 ] ; 4 P 0 = Z 0; Initial search directions 5 for i = 0, 1,, convergence do 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1 H N r i+1 ] ; Multiprecondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,, i; 12 P i+1 = Z i+1 i j=0 P jβ i,j ; Project and orthog. 13 end 14 Return x i+1 ; PCG x 0 given ; r 0 = b Ax 0 ; z 0 = Hr 0; p 0 = z 0; for i = 0, 1,, conv. do end q i = Ap i ; α i = (q i p i ) 1 (p i r i ); x i+1 = x i + α i p i ; r i+1 = r i α i q i ; z i+1 = Hr i+1 ; β i = (q i p i ) 1 (q i z i+1 ); p i+1 = z i+1 β i p i ; Return x i+1 ; Nicole Spillane (CNRS,CMAP) 13/29

MultiPreconditioned CG for Ax = b prec. by {H s } s=1,,n A, H R n n spd, MPCG H = N s=1 Hs, where H s spsd. 1 x 0 given ; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0 H N r i+1 ] ; Multiprecondition 4 P 0 = Z 0; Initial search directions 5 for i = 0, 1,, convergence do 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1 H N r i+1 ] ; Multiprecondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,, i; 12 P i+1 = Z i+1 i j=0 P jβ i,j ; Orthogonalize 13 end 14 Return x i+1 ; Remark x i, r i R n. Z i, P i, R n N n : size of problem, N : nb of precs. Properties 1. Global minimization over x 0 + i 1 j=0 range(p j) of dimension : i N. 2. P i AP j = 0 (i j), but no short recurrence. Nicole Spillane (CNRS,CMAP) 14/29

Numerical Illustration (Heterogeneous Elasticity E 2 /E 1 = 10 5 ) 10 0 10 1 Error (log scale) 10 2 10 3 10 4 10 5 10 6 10 7 MPBDD BDD BDD+GenEO 0 20 40 60 80 100 120 140 Iterations Dimension of the minimization space 1,500 1,000 500 MPBDD BDD BDD+GenEO 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Iterations Iterations Nicole Spillane (CNRS,CMAP) 15/29 Number of local solves 2.5 104 2 1.5 1 0.5 0 MPBDD BDD

Balancing Domain Decomposition GenEO Coarse Space Multipreconditioned BDD Adaptive Multipreconditioned BDD Solid propellant (linear elasticity with FETI) in collaboration with C. Bovet (ONERA) 6721 stiff inclusions, E2 /E1 6 106, 57 Mdofs, 360 subdomains on 1440 cores Nicole Spillane (CNRS,CMAP) 16/29

Nicole Spillane (CNRS,CMAP) 17/29 Good convergence but a possible limitation Local contributions H s r i form a good minimization space. Not adaptive : invert P i AP i R N N at each iteration in α i = (P i AP i ) (P i r i ). Introduce adaptativity into multipreconditioned CG. a few local vectors should suffice to accelerate convergence (previous work on GenEO).

1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Adaptive Multipreconditioned BDD

Adaptive Multipreconditioned CG for Ax = b preconditioned by N s=1 Hs. (τ R + is chosen by the user e.g., τ = 0.1) 1 x 0 chosen; 2 r 0 = b Ax 0 ; Z 0 = Hr 0 ; P 0 = Z 0; 3 for i = 0, 1,, convergence do 4 Q i = AP i ; 5 α i = (Qi P i ) (P i r i ); 6 x i+1 = x i + P i α i ; 7 r i+1 = r i Q i α i ; 8 t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 9 if t i < τ then τ-test 10 Z i+1 = [ H 1 r i+1 H N ] r i+1 ; Multiprec. 11 else 12 Z i+1 = Hr i+1 ; Precondition 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,, i; 15 P i+1 = Z i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; Remark x i, r i R n. Z i, P i R n N or R n, n : size of problem, N : nb of precs. Properties 1. Global minimization over x 0 + i 1 j=0 range(p j) of dim i dim i N. 2. P i AP j = 0 (i j), but no short recurrence. Nicole Spillane (CNRS,CMAP) 18/29

Theoretical Results (1/2) : Choice of the τ-test? Theorem If the τ test returns t i τ then x x i+1 A x x i A ( ) 1 1/2. 1 + τ Proof (inspired by [Axelsson, Kaporin, 01]) : n n x = x 0 + P i α i = x i + P j α j x x i 2 A = x x i 1 2 A x x i 2 A i=0 j=i x i+1 = x i + P i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1 H N r i+1 else end Z i+1 = Hr i+1 ; n P j α j 2 A x x i 1 2 A = x x i 2 A+ P i 1 α i 1 2 A. j=i r i 2 H P i 1 α i 1 2 A = 1+ x x i 2 A r i 2 H }{{} = x x i 2 AHA/ x x i 2 A λ min 1 1+ P i 1α i 1 2 A r i 2 H } {{ } =t i 1 1+τ. Nicole Spillane (CNRS,CMAP) 19/29

Nicole Spillane (CNRS,CMAP) 20/29 Theoretical Results (2/2) : No extra work for well conditioned problems Theorem t i 1/λ max so if τ < 1/λ max then AMPCG is PCG.

Nicole Spillane (CNRS,CMAP) 21/29 Local Adaptive MPCG for N s=1 As x = b preconditioned by N s=1 Hs. (τ R + is chosen by the user) 1 x 0 chosen ; r 0 = b Ax 0 ; Z 0 = Hr 0 ; P 0 = Z 0; 2 for i = 0, 1,, convergence do 3 Q i = AP i ; 4 α i = (Q i P i ) (P i r i ); 5 x i+1 = x i + P i α i ; 6 r i+1 = r i Q i α i ; 7 Z i+1 = Hr i+1 ; initialize Z i+1 8 for s = 1,, N do 9 ti s = P iα i, A s P i α i r ; i+1 Hs r i+1 10 if ti s < τ then local τ-test 11 Z i+1 = [ Z i+1 H s ] r i+1 ; 12 end 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,, i; 15 P i+1 = Z i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; An additional assumption A = Benefits N R } s {{ S s R } s. :=A s s=1 Between 1 and N search directions per iteration. Reduces the cost of storage and of inverting P i AP i.

Numerical Illustration (0/6) : Homogenous subdomains Dimension of the minimization space 800 600 400 200 AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO 0 2 4 6 8 10 12 Error (log scale) 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 0 2 4 6 8 10 12 Iterations AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO 0 2 4 6 8 10 12 Iterations Iterations Nicole Spillane (CNRS,CMAP) 22/29 Number of local solves 4,000 3,000 2,000 1,000 0 AMPBDD-G AMPBDD-L MPBDD BDD

Numerical Illustration (1/6) Elasticity with E 2 /E 1 = 10 5 10 0 10 1 Error (log scale) 10 2 10 3 10 4 10 5 10 6 10 7 AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO 0 20 40 60 80 100 120 140 Iterations Dimension of the minimization space 1,500 1,000 500 AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Iterations Iterations Nicole Spillane (CNRS,CMAP) 23/29 Number of local solves 2.5 104 2 1.5 1 0.5 0 AMPBDD (Global) AMPBDD (Local) MPBDD BDD

Numerical Illustration (2/6) : Zoom on new methods Dimension of the minimization space 1,500 1,000 500 AMPBDD (Global) AMPBDD (Local) MPBDD BDD+GenEO 0 5 10 15 20 25 Error (log scale) 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 0 5 10 15 20 25 Iterations AMPBDD (Global) AMPBDD (Local) MPBDD BDD+GenEO 0 5 10 15 20 25 Iterations Iterations Nicole Spillane (CNRS,CMAP) 24/29 Number of local solves 8,000 6,000 4,000 2,000 0 AMPBDD (Global) AMPBDD (Local) MPBDD

Numerical Illustration (3/6) : Weak Scalability FETI Software : Z-Set Wall time [s] 2,500 2,000 1,500 1,000 500 0 FETI AMPFETIL AMPFETIG Cluster : Cobalt at CCRT/TGCC 1422 computational nodes with Intel Broadwell Processors : 2.4 GHz, 28 cores 128 Go SDRAM, infiniband Mellanox network 7 cores per subdomain and local factorizations are performed with mumps. 8 27 64 125 216 343 512 Nb. of subdomains N #DOFs ( 10 6 ) #cores #iter. # min. space time (s) 8 1.6 56 69 132 89.58 64 12.5 448 112 742 210.80 216 42.0 1512 107 2257 277.30 512 99.2 3584 108 5729 376.30 C. Bovet, P. Gosselet, A. Parret Freaud, and N. S. Adaptive multi preconditioned FETI : scalability results and robustness assessment. Computers and Structures, 2017. Nicole Spillane (CNRS,CMAP) 25/29

Nicole Spillane (CNRS,CMAP) 26/29 Numerical Illustration (4/6) : Composite Weave Pattern FETI in collaboration with A. Parret Freaud (Safran Tech)

Numerical Illustration (5/6) : Choice of τ 1 35 Global Local Contraction factor ρ 0.8 0.6 0.4 Number of iterations 30 25 20 15 10 4 10 3 10 2 10 1 10 0 10 1 10 4 10 3 10 2 10 1 10 0 10 1 Threshold τ (log scale) Threshold τ (log scale) Dimension of the minimization space 1,000 800 600 400 Global Local Number of local solves 7,000 6,000 5,000 Global Local 10 4 10 3 10 2 10 1 10 0 10 1 10 4 10 3 10 2 10 1 10 0 10 1 Threshold τ (log scale) Threshold τ (log scale) Nicole Spillane (CNRS,CMAP) 27/29

Nicole Spillane (CNRS,CMAP) 28/29 Numerical Illustration (6/6) : 400 stiff inclusions FETI in collaboration with C. Bovet (ONERA) τ = 0.01, E max /E min = 10 5, 480 subdomains, 32 Mdofs

Conclusion AMPDD Robustness and Efficiency. Perspectives Best adaptation process in non symmetric cases? Best adaptation process in a fully algebraic context? Implementation of AMPDD in an open source code. Restart! Recycle! within AMPDD Krylov subspace solvers. Theoretical Analysis at the PDE level. N. S. An Adaptive Multipreconditioned Conjugate Gradient SISC, 2016. N. S. Algebraic Adaptive Multi Preconditioning applied to Restricted Additive Schwarz. DD23 Proceedings, 2016. C. Bovet, P. Gosselet, A. Parret Freaud, and N. S. Adaptive multi preconditioned FETI : scalability results and robustness assessment. Computers and Structures, 2017. C. Bovet, P. Gosselet, and N. S. Multipreconditioning for nonsymmetric problems : the case of orthomin and bicg. Note au CRAS, 2017. Nicole Spillane (CNRS,CMAP) 29/29