Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms

Size: px
Start display at page:

Download "Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms"

Transcription

1 Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Nicole Spillane Center for Mathematical Modelling at the Universidad de Chile in Santiago. July 9th, 2015 DD23 Jeju Island, Korea

2 Nicole Spillane (U. de Chile) 2 / 33 Acknowledgements Collaborators Pierre Gosselet (CNRS, ENS Cachan) Frédéric Nataf (CNRS, Université Pierre et Marie Curie) Daniel J. Rixen (University of Munich) François-Xavier Roux (ONERA, Université Pierre et Marie Curie) Funding Financial support by CONICYT through project Fondecyt

3 icole Spillane (U. de Chile) 3 / 33 Balancing Domain Decomposition (BDD): Ku = f (K spd) BDD reduces the problem to the interface Γ : Ω Γ Ω s Γ s Au,Γ = b, where A := K ΓΓ K ΓI K 1 II K IΓ, b := f Γ K ΓI K 1 II f I. The operator A is a sum of local contributions : A = N R s S s R s, s=1 S s := K s Γ s Γ s K s Γ s I s (K s I s I s) 1 K s I s Γ s, R s : Γ Γ s. J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3): , The preconditioner H also: H := N R s D s S s D s R s, with s=1 The coarse space is range(u) := N R s D s Ker(S s ). s=1 N R s D s R s = I. s=1

4 Nicole Spillane (U. de Chile) 4 / 33 Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = Young s modulus E Error (log scale) Metis Partition Iterations Problem: We want to design new DD methods with three objectives: Reliability: robustness and scalability. Efficiency: adapt automatically to difficulty. Simplicity: non invasive implementation.

5 Nicole Spillane (U. de Chile) 4 / 33 Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = Young s modulus E Metis Partition Error (log scale) Global Local Simultaneous PPCG GenEO Iterations Problem: We want to design new DD methods with three objectives: Reliability: robustness and scalability. Efficiency: adapt automatically to difficulty. Simplicity: non invasive implementation.

6 Nicole Spillane (U. de Chile) 5 / 33 Contents Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG

7 Nicole Spillane (U. de Chile) 6 / 33 Projected PCG [Nicolaides, 1987 Dostál, 1988] for Ax = b preconditioned by H and projection Π Assume that A, H R n n are spd and U R n n0 is full rank, Define Π := I U(U AU) 1 U A. 1 x 0 = U(U AU) 1 U b; Initial Guess 2 r 0 = b Ax 0 ; Initial residual 3 z 0 = Hr 0; 4 p 0 =Πz 0 ; Initial search direction 5 for i = 0, 1,..., convergence do 6 q i = Ap i ; 7 α i = (q i p i ) 1 (p i r i ); 8 x i+1 = x i + α i p i ; Update approximate solution 9 r i+1 = r i α i q i ; Update residual 10 z i+1 = Hr i+1 ; Precondition 11 β i = (q i p i ) 1 (q i z i+1 ); 12 p i+1 = Πz i+1 β i p i ; Project and orthogonalize 13 end 14 Return x i+1 ; Convergence [Kaniel, 66 Meinardus, 63] [ ] i x x i A κ 1 2 x x 0 A κ + 1 κ = λ max λ min, λ max and λ min : extreme eigenvalues of HAΠ excluding 0. GenEO is a choice of range(u) that guarantees fast convergence.

8 Nicole Spillane (U. de Chile) 7 / 33 Bibliography (1/2) (coarse spaces based on generalized eigenvalue problems) Multigrid M. Brezina, C. Heberton, J. Mandel, and P. Vaněk. Technical Report 140, University of Colorado Denver, April Additive Schwarz J. Galvis and Y. Efendiev. Multiscale Model. Simul., Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. ESAIM Math. Model. Numer. Anal., F. Nataf, H. Xiang, V. Dolean, and N. S. SIAM J. Sci. Comput., V. Dolean, F. Nataf, R. Scheichl, and N. S. Comput. Methods Appl. Math., N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Numer. Math., Optimized Schwarz Methods S. Loisel, H. Nguyen, and R. Scheichl. Technical report, submitted, R. Haferssas, P. Jolivet, and F. Nataf. Technical report, Submitted, hal , 2015.

9 Bibliography (2/2) (coarse spaces based on generalized eigenvalue problems) Substructuring Methods P.E. Bjørstad, J. Koster and P. Krzyżanowski. Applied Parallel Computing, J. Mandel and B. Sousedík. Comput. Methods Appl. Mech. Engrg., B. Sousedík, J. Šístek, and J. Mandel. Computing, 2013 N. S. and D. J. Rixen. Int. J. Numer. Meth. Engng., H. H. Kim and E. T. Chung, Model. Simul., A. Klawonn, P. Radtke, and O. Rheinbach. DD22 Proceedings, A. Klawonn, P. Radtke, and O. Rheinbach. SIAM J. Numer. Anal., And many other talks at this conference: Minisymposium on monday: Olof B. Widlund, Clark R. Dohrmann (with Clemens Pechstein), Pierre Jolivet (HPDDM Frédéric Nataf s plenary talk tomorrow! Session on friday morning (CT 7)! Nicole Spillane (U. de Chile) 8 / 33

10 Nicole Spillane (U. de Chile) 9 / 33 Adaptive Coarse Space: Strategy (1/5) Relative error bounded w.r.t C/c Prove (2) Prove (1) Problem dependant Use trace theorems, Poincaré inequalities, Korn inequalities... (1) holds (2) holds DD method dependant FETI BDD Additive Schwarz Abstract Framework ([Toselli, Widlund (2005)]) (1) λ min > c if stable decomposition (2) λ max < C if local solver is stable [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

11 Nicole Spillane (U. de Chile) 10 / 33 Adaptive Coarse Space: Strategy (2/5) Relative error bounded w.r.t C/c Prove (2) Prove (1) Problem dependant Use trace theorems, Poincaré inequalities, Korn inequalities... (1) holds (2) holds DD method dependant FETI BDD Additive Schwarz Abstract Framework ([Toselli, Widlund (2005)]) (1) λ min > c if stable decomposition (2) λ max < C if local solver is stable [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

12 Nicole Spillane (U. de Chile) 11 / 33 Adaptive Coarse Space: Strategy (3/5) Relative error bounded w.r.t C/c In Problem dependant Prove (2) Prove (1) Make (1) or (2) local: x s M s x s τ x s N s x s for all x s. Use trace theorems, Poincaré inequalities, (Bottleneck Korn inequalities... Estimate) (1) holds (2) holds DD method dependant FETI BDD Additive Schwarz Abstract Framework ([Toselli, Widlund (2005)]) (1) λ min > c if stable decomposition (2) λ max < C if local solver is stable [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

13 Nicole Spillane (U. de Chile) 12 / 33 Adaptive Coarse Space: Strategy (4/5) Relative error bounded w.r.t C/c In Problem dependant Solve Prove M(2) s x s k = λs k Ns xprove s k. (1) bottleneck estimate x s M s x s τ x s N s x s holds Use intrace span{x theorems, s Poincaré inequalities, Korn λs k τ}, k ; inequalities... does not hold in span{x s k ; λs k > τ}. (1) holds (2) holds DD method dependant FETI BDD Additive Schwarz Abstract Framework ([Toselli, Widlund (2005)]) (1) λ min > c if stable decomposition (2) λ max < C if local solver is stable [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

14 Nicole Spillane (U. de Chile) 13 / 33 Adaptive Coarse Space: Strategy (5/5) Π: A-orthogonal projection onto the space where the bottleneck estimate holds Ax = b is equivalent to : In (I Π) Ax = (I Π) b } Problem {{ dependant } Direct Solver and Π Ax = Π b. }{{} DD method Relative error bounded w.r.t τ and number of neighbours N Solve Prove M(2) s x s k = λs k Ns xprove s k. (1) bottleneck estimate x s M s x s τ x s N s x s holds Use intrace span{x theorems, s Poincaré inequalities, Korn λs k τ}, k ; inequalities... does not hold in span{x s k ; λs k > τ}. (1) holds (2) holds DD method dependant FETI BDD Additive Schwarz Abstract Framework ([Toselli, Widlund (2005)]) (1) λ min > c if stable decomposition (2) λ max < C if local solver is stable [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

15 Nicole Spillane (U. de Chile) 14 / 33 GenEO Coarse Space for BDD λ min 1. the bottleneck estimate for λ max is x s R s AR s x s (1/τ) x s D s 1 SD s 1 x s. So we solve in each subdomain : D s 1 S s D s 1 x s k = λs k Rs AR s x s k, and define the coarse space as range(u) = span{r s x s k ; s = 1,..., N and λs k τ}. The the effective condition number is bounded by : κ(haπ) N τ ; N : number of neighbours of a subdomain.

16 icole Spillane (U. de Chile) 15 / 33 Numerical Illustration: Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = 10 12, τ = 0.1 Young s modulus E Metis Partition Error (log scale) BDD BDD + GenEO Iterations Size of the coarse space: n 0 = 349 including 212 rigid body modes.

17 Conclusion for GenEO and introduction for MPCG Convergence guaranteed in few iterations, This is achieved with local contributions to the coarse space. Only drawback could be the cost of the eigensolves. Instead of precomputing a coarse space, take advantage of the local components already being computed: H := N } R s D s {{ S s D s R } s. :=H s s=1 R. Bridson and C. Greif. SIAM J. Matrix Anal. Appl., 27(4): , C. Greif, T. Rees, and D. Szyld. DD 21 proceedings, D. J. Rixen. PhD thesis, Université de Liège, Belgium, Collection des Publications de la Faculté des Sciences appliquées, n.175, P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S.. International Journal for Numerical Methods in Engineering, Currently Published Online, Nicole Spillane (U. de Chile) 16 / 33

18 Multi Preconditioned CG for Ax = b prec. by {H s } s=1,...,n and Π A, H R n n spd U R n n0 full rank, H = N s=1 Hs, where H s spsd. MPCG 1 x 0 = U(U AU) 1 U b; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0... H N r i+1 ] ; 4 P 0 = ΠZ 0; Initial search directions 5 for i = 0, 1,..., convergence do Remark r i, x i R n Z i, P i, Q i R n N β i,j R N N α i R N 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1... H N r i+1 ] ; Multi Precondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,..., i; 12 P i+1 = ΠZ i+1 i j=0 P jβ i,j ; Project and orthog. 13 end 14 Return x i+1 ; n: size of problem, N: nb of precs. Properties 1. P i AP j = 0 (i j). 2. r i P j = 0 (j < i). 3. no short recurrence. 4. x x i+1 A = min{ x x A ; x x i + range(p i )}. icole Spillane (U. de Chile) 17 / 33

19 Nicole Spillane (U. de Chile) 17 / 33 Multi Preconditioned CG for Ax = b prec. by {H s } s=1,...,n and Π A, H R n n spd U R n n0 full rank, H = N s=1 Hs, where H s spsd. MPCG PPCG 1 x 0 = U(U AU) 1 U b; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0... H N r i+1 ] ; 4 P 0 = ΠZ 0; Initial search directions 5 for i = 0, 1,..., convergence do 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1... H N r i+1 ] ; Multi Precondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,..., i; 12 P i+1 = ΠZ i+1 i j=0 P jβ i,j ; Project and orthog. 13 end 14 Return x i+1 ; x 0 = U(U AU) 1 U b; r 0 = b Ax 0 ; z 0 = Hr 0; p 0 =Πz 0; for i = 0, 1,..., conv. do q i = Ap i ; α i = (q i p i ) 1 (p i r i ); x i+1 = x i + α i p i ; r i+1 = r i α i q i ; z i+1 = Hr i+1 ; β i = (q i p i ) 1 (q i z i+1 ); p i+1 = Πz i+1 β i p i ; end Return x i+1 ;

20 Numerical Illustration (Heterogeneous Elasticity E 2 /E 1 = 10 5 ) Error (log scale) Simultaneous (MPCG) PPCG GenEO Iterations Dimension of the minimization space 1,500 1, Simultaneous (MPCG) PPCG GenEO Number of local solves Simultaneous (MPCG) PPCG Nicole Spillane (U. de Chile) Iterations Iterations 18 / 33

21 Simultaneous FETI: Tests with CPU time (F.-X. Roux) 100 subdomains, dofs, ν = 0.45 or , 1 E GHz 8-core Xeon processors, Intel fortran, MKL-pardiso. Checker Slices 1 Slices 2 Decomp. ν Solver #it dim Max solves Time (s) Slices FETI > 800 > 800 > 1600 > 7300 S-FETI Slices FETI S-FETI Checker FETI S-FETI Slices FETI > 800 > 800 > 1600 > 7300 S-FETI Slices FETI > 800 > 800 > 1600 > 7300 S-FETI Nicole Spillane (U. de Chile) 19 / 33

22 icole Spillane (U. de Chile) 20 / 33 Good convergence but two possible limitations Local contributions H s r i form a good minimization space. Cost of inverting P i AP i R N N at each iteration in α i = (P i AP i ) (P i r i ) and β i,j = (P j AP j ) (Q j Z i+1 ). Simultaneous BDD may work too hard on easy problems. Error (log scale) Simultaneous (MPCG) PPCG GenEO Number of local solves 4,000 3,000 2,000 1,000 Simultaneous (MPCG) PPCG Iterations Introduce adaptativity into multipreconditioned CG. From the GenEO section we know that: Iterations a few local vectors should suffice to accelerate convergence. they are the low frequency eigenvectors of: D s 1 S s D s 1 x s k = λs k Rs AR s x s k.

23 icole Spillane (U. de Chile) 21 / 33 Adaptive Multi Preconditioned CG for Ax = b preconditioned by N s=1 Hs and projection Π. (τ R + is chosen by the user) 1 x 0 = U(U AU) 1 U b; 2 r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; 3 for i = 0, 1,..., convergence do 4 Q i = AP i ; 5 α i = (Qi P i ) (P i r i ); 6 x i+1 = x i + P i α i ; 7 r i+1 = r i Q i α i ; 8 t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 9 if t i < τ then τ-test 10 Z i+1 = [ H 1 r i+1... H N ] r i+1 11 else 12 Z i+1 = Hr i+1 ; 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,..., i; 15 P i+1 = ΠZ i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; Remark x i, r i R n, Z i, P i, Q i R n N or R n, α i R N or R, β i,j R N N, R N, R 1 N or R, P i α i R n. n: size of problem, N: nb of precs.

24 icole Spillane (U. de Chile) 22 / 33 Theoretical Result (1/3): PPCG like Properties x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; for i = 0, 1,..., convergence do Q i = AP i ; α i = (Q i P i ) (P i ri ); x i+1 = x i + P i α i ; r i+1 = r i Q i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1... H N r i+1 else end Z i+1 = Hr i+1 ; β i,j = (Q j P j ) (Q j Z i+1 ); P i+1 = ΠZ i+1 i P j β i,j ; j=0 end Return x i+1 ; Remark No short recurrence property as soon as the minimization space has been augmented. Theorem x n n0 = x. Blocs of search directions are pairwise A-orthogonal: P j AP i = 0 (i j). Residuals are pairwise H-orthogonal: Hr j, r i = 0 (i j). x { x i A = min x x A ; x range(u) + } i 1 j=0 range(p j).

25 icole Spillane (U. de Chile) 23 / 33 Theoretical Result (2/3): Two types of iterations x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; for i = 0, 1,..., convergence do Q i = AP i ; α i = (Q i P i ) (P i ri ); x i+1 = x i + P i α i ; r i+1 = r i Q i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1... H N r i+1 else end Z i+1 = Hr i+1 ; β i,j = (Q j P j ) (Q j Z i+1 ); P i+1 = ΠZ i+1 i P j β i,j ; j=0 end Return x i+1 ; Theorem If the τ test returns t i 1 τ then ( ) x x i A 1 1/2, x x i 1 A 1 + λ min τ λ min = 1 for BDD.

26 Theoretical Result (2/3): Two types of iterations x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; for i = 0, 1,..., convergence do Q i = AP i ; α i = (Q i P i ) (P i ri ); x i+1 = x i + P i α i ; r i+1 = r i Q i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1... H N r i+1 else end Z i+1 = Hr i+1 ; β i,j = (Q j P j ) (Q j Z i+1 ); P i+1 = ΠZ i+1 i P j β i,j ; j=0 end Return x i+1 ; Theorem If the τ test returns t i 1 τ then ( ) x x i A 1 1/2, x x i 1 A 1 + λ min τ λ min = 1 for BDD. Proof x = x 0 + n n 0 n n 0 P i α i = x i + i=0 j=i n n 0 x x i 2 A = P j α j 2 A j=i P j α j x x i 1 2 A = x x i 2 A + P i 1α i 1 2 A. (Similar to [Axelsson and Kaporin, 2001].) x x i 1 2 A x x i 2 = 1 + r i 2 H P i 1 α i 1 2 A P i 1 α i 1 2 A A d i 2 A r i λ min H r i λ min τ. H }{{}}{{} = d i 2 AHA / d i 2 =t i 1 A icole Spillane (U. de Chile) 23 / 33

27 icole Spillane (U. de Chile) 24 / 33 Theoretical Result (3/3): No extra work for easy pbs. x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; for i = 0, 1,..., convergence do Q i = AP i ; α i = (Q i P i ) (P i ri ); x i+1 = x i + P i α i ; r i+1 = r i Q i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1... H N r i+1 else end Z i+1 = Hr i+1 ; β i,j = (Q j P j ) (Q j Z i+1 ); P i+1 = ΠZ i+1 i P j β i,j ; j=0 end Return x i+1 ; Theorem If λ max (HA) 1/τ then the algorithm is the usual PPCG.

28 icole Spillane (U. de Chile) 24 / 33 Theoretical Result (3/3): No extra work for easy pbs. x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; for i = 0, 1,..., convergence do Q i = AP i ; α i = (Q i P i ) (P i ri ); x i+1 = x i + P i α i ; r i+1 = r i Q i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1... H N r i+1 else end Z i+1 = Hr i+1 ; β i,j = (Q j P j ) (Q j Z i+1 ); P i+1 = ΠZ i+1 i P j β i,j ; j=0 end Return x i+1 ; Theorem If λ max (HA) 1/τ then the algorithm is the usual PPCG. Proof We begin with r i = r i 1 Q i 1 α i 1 and take the inner product by Hr i : Hr i, r i = Hr i, r i 1 Hr i, AP i 1 α i 1 or equivalently: r i 1/2 HAH P i 1α i 1 1/2 A (C.S.), Hr i, r i Hr i, AHr i P i 1α i 1, AP i 1 α i 1. Hr i, r i Finally: τ 1 Hr i, r i λ max Hr i, AHr i P i 1α i 1, AP i 1 α i 1 = t i 1. Hr i, r i

29 icole Spillane (U. de Chile) 25 / 33 Local Adaptive MPCG for N s=1 As x = b preconditioned by N s=1 Hs and projection Π. (τ R + is chosen by the user) 1 x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = ΠZ 0; 2 for i = 0, 1,..., convergence do 3 Q i = AP i ; 4 α i = (Q i P i ) (P i r i ); 5 x i+1 = x i + P i α i ; 6 r i+1 = r i Q i α i ; 7 Z i+1 = Hr i+1 ; initialize Z i+1 8 for s = 1,..., N do 9 ti s = P iα i, A s P i α i r ; i+1 Hs r i+1 10 if ti s < τ then local τ-test 11 Z i+1 = [Z i+1 H s r i+1 ]; 12 end 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,..., i; 15 P i+1 = ΠZ i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; A = N s=1 Rs }{{ S s R } s. :=A s Between 1 and N search directions per iteration. Reduces the cost of inverting P i AP i (one limitation of MPCG) Theorem If the τ test returns t s i 1 τ for all s = 1,..., N then ( ) x x i A 1 1/2. x x i 1 A 1 + λ min τ

30 Implementation for BDD: Saving local solves 1 x 0 = U(U AU) 1 U b; r 0 = b Ax 0; Z 0 = Hr 0; P 0 = Z 0; 2 for i = 0, 1,..., convergence do 3 Q i = N s=1 Qs i where Qi s = A s Z i A s U(U AU) 1 (AU) Z i i 1 Qj sβ i 1,j ; j=0 4 α i = (Qi P i ) (P i r i ); x i+1 = x i + Π P i α i ; r i+1 = r i Q i α i ; 5 Z i+1 = Hr i+1 ; 6 for s = 1,..., N do 7 ti s = Π P i α i, Qi sα i r ; i+1 Hs r i+1 8 if ti s < τ then 9 Z i+1 = [Z i+1 H s r i+1 ]; 10 Subtract H s r i+1 from the first column in Z i+1 ; 11 end 12 end 13 β i,j = (Qi P i ) (Q j Z i+1 ) (j = 0,..., i); P i+1 = Z i+1 i P j β i,j ; j=0 14 end 15 Return x i+1 ; Same trick as in : P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S. Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions. International Journal for Numerical Methods in Engineering, Nicole Spillane (U. de Chile) 26 / 33

31 Nicole Spillane (U. de Chile) 27 / 33 Numerical Illustration (1/4): Homogenous subdomains Error (log scale) Iterations Global Local Simultaneous PPCG GenEO Dimension of the minimization space Iterations Global Local Simultaneous PPCG GenEO Number of local solves 4,000 3,000 2,000 1,000 0 Global Local Simultaneous PPCG Iterations

32 Numerical Illustration (2/4): Metis subdomains Error (log scale) Global Local Simultaneous PPCG GenEO Iterations Dimension of the minimization space 1,500 1, Global Local Simultaneous PPCG GenEO Number of local solves Global Local Simultaneous PPCG Nicole Spillane (U. de Chile) Iterations Iterations 28 / 33

33 Numerical Illustration (2/4): Zoom on new methods Error (log scale) Iterations Global Local Simultaneous GenEO Nicole Spillane (U. de Chile) 29 / 33

34 Numerical Illustration (3/4): Channels Error (log scale) Global Local Simultaneous PPCG GenEO Iterations Dimension of the minimization space 2,500 2,000 1,500 1, Global Local Simultaneous PPCG GenEO Nicole Spillane (U. de Chile) Iterations Iterations 30 / 33 Number of local solves Global Local Simultaneous PPCG

35 Numerical Illustration (3/4): Zoom on new methods Error (log scale) Iterations Global Local Simultaneous GenEO Nicole Spillane (U. de Chile) 31 / 33

36 Nicole Spillane (U. de Chile) 32 / 33 Numerical Illustration (4/4) Variable heterogeneity for N = 81 (k-scaling) : Global τ test Local τ test Simultaneous usual BDD GenEO E 2 /E 1 it solves it solves it solves it solves it dim < 554 dim < 423 dim < 1428 dim < 353 dim < 372 Variable number of subdomains for E 2 /E 1 = 10 5 (k scaling) : Global τ test Local τ test Simultaneous usual BDD GenEO N it solves it solves it solves it solves it dim < 693 dim < 379 dim < 1193 dim < 320 dim < 327

37 Nicole Spillane (U. de Chile) 32 / 33 Numerical Illustration (4/4) Variable heterogeneity for N = 81 (k-scaling) : Global τ test Local τ test Simultaneous usual BDD GenEO E 2 /E 1 it solves it solves it solves it solves it dim < 554 dim < 423 dim < 1428 dim < 353 dim < 372 Variable number of subdomains for E 2 /E 1 = 10 5 (k scaling) : Global τ test Local τ test Simultaneous usual BDD GenEO N it solves it solves it solves it solves it dim < 693 dim < 379 dim < 1193 dim < 320 dim < 327

38 Nicole Spillane (U. de Chile) 33 / 33 Conclusion Reliability, Efficiency and Simplicity through adaptive coarse spaces and adaptive multiple search directions. Perspectives Test on industrial test cases and measure CPU times. Use the τ test to recycle part of the minimization spaces. Simultaneous BDD: Theoretical Analysis at the PDE level. Adaptive Multi PCG for other DD methods: when λ max is known or neither λ min or λ max. N. S., D. J. Rixen, Automatic spectral coarse spaces for robust FETI and BDD algorithms. IJNME, P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S. Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions. International Journal for Numerical Methods in Engineering, N. S. Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and an Application to Domain Decomposition Submitted, Preprint available online <hal >, Downloadable at

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique) Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine Nicole Spillane (CNRS, CMAP, École Polytechnique) C. Bovet (ONERA), P. Gosselet (ENS Cachan), A. Parret Fréaud (SafranTech),

More information

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Nicole Spillane To cite this version: Nicole Spillane. Algebraic Adaptive Multipreconditioning applied to Restricted Additive

More information

An Adaptive Multipreconditioned Conjugate Gradient Algorithm

An Adaptive Multipreconditioned Conjugate Gradient Algorithm An Adaptive Multipreconditioned Conjugate Gradient Algorithm Nicole Spillane To cite this version: Nicole Spillane. An Adaptive Multipreconditioned Conjugate Gradient Algorithm. 2016. HAL Id: hal-01170059

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Victorita Dolean (Univ. Nice

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

Substructuring for multiscale problems

Substructuring for multiscale problems Substructuring for multiscale problems Clemens Pechstein Johannes Kepler University Linz (A) jointly with Rob Scheichl Marcus Sarkis Clark Dohrmann DD 21, Rennes, June 2012 Outline 1 Introduction 2 Weighted

More information

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method 346 Two new enriched multiscale coarse spaces for the Additive Average Schwarz method Leszek Marcinkowski 1 and Talal Rahman 2 1 Introduction We propose additive Schwarz methods with spectrally enriched

More information

Domain Decomposition solvers (FETI)

Domain Decomposition solvers (FETI) Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de rixen@tum.de 8-10 October

More information

Some Domain Decomposition Methods for Discontinuous Coefficients

Some Domain Decomposition Methods for Discontinuous Coefficients Some Domain Decomposition Methods for Discontinuous Coefficients Marcus Sarkis WPI RICAM-Linz, October 31, 2011 Marcus Sarkis (WPI) Domain Decomposition Methods RICAM-2011 1 / 38 Outline Discretizations

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

arxiv: v1 [math.na] 16 Dec 2015

arxiv: v1 [math.na] 16 Dec 2015 ANALYSIS OF A NEW HARMONICALLY ENRICHED MULTISCALE COARSE SPACE FOR DOMAIN DECOMPOSITION METHODS MARTIN J. GANDER, ATLE LONELAND, AND TALAL RAHMAN arxiv:52.05285v [math.na] 6 Dec 205 Abstract. We propose

More information

On Iterative Substructuring Methods for Multiscale Problems

On Iterative Substructuring Methods for Multiscale Problems On Iterative Substructuring Methods for Multiscale Problems Clemens Pechstein Introduction Model Problem Let Ω R 2 or R 3 be a Lipschitz polytope with boundary Ω = Γ D Γ N, where Γ D Γ N = /0. We are interested

More information

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Jan Mandel University of Colorado at Denver Bedřich Sousedík Czech Technical University

More information

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Conference Applications of Mathematics 2012 in honor of the 60th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 2012 SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Jakub Šístek1,2,

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver Multilevel and Adaptive Iterative Substructuring Methods Jan Mandel University of Colorado Denver The multilevel BDDC method is joint work with Bedřich Sousedík, Czech Technical University, and Clark Dohrmann,

More information

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 spcl.inf.ethz.ch @spcl eth Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 Introduction Domain decomposition methods The

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann DD 21, Rennes. June 29, 2012 In collaboration with

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

Parallel Sums and Adaptive BDDC Deluxe

Parallel Sums and Adaptive BDDC Deluxe 249 Parallel Sums and Adaptive BDDC Deluxe Olof B. Widlund 1 and Juan G. Calvo 2 1 Introduction There has recently been a considerable activity in developing adaptive methods for the selection of primal

More information

C. Vuik 1 R. Nabben 2 J.M. Tang 1

C. Vuik 1 R. Nabben 2 J.M. Tang 1 Deflation acceleration of block ILU preconditioned Krylov methods C. Vuik 1 R. Nabben 2 J.M. Tang 1 1 Delft University of Technology J.M. Burgerscentrum 2 Technical University Berlin Institut für Mathematik

More information

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine P. Jolivet and Frédéric Nataf Laboratory J.L. Lions, Univ. Paris VI, Equipe Alpines INRIA-LJLL et CNRS joint

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients

On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients Stefano Zampini Computer, Electrical and Mathematical Sciences

More information

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps Nicole Spillane Frédérik Nataf Laboratoire

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

arxiv: v1 [math.na] 28 Feb 2008

arxiv: v1 [math.na] 28 Feb 2008 BDDC by a frontal solver and the stress computation in a hip joint replacement arxiv:0802.4295v1 [math.na] 28 Feb 2008 Jakub Šístek a, Jaroslav Novotný b, Jan Mandel c, Marta Čertíková a, Pavel Burda a

More information

Deflated Krylov Iterations in Domain Decomposition Methods

Deflated Krylov Iterations in Domain Decomposition Methods 305 Deflated Krylov Iterations in Domain Decomposition Methods Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 1 Introduction The goal of this research is an investigation of some advanced versions of

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

Extending the theory for domain decomposition algorithms to less regular subdomains

Extending the theory for domain decomposition algorithms to less regular subdomains Extending the theory for domain decomposition algorithms to less regular subdomains Olof Widlund Courant Institute of Mathematical Sciences New York University http://www.cs.nyu.edu/cs/faculty/widlund/

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

BDDC deluxe for Isogeometric Analysis

BDDC deluxe for Isogeometric Analysis BDDC deluxe for sogeometric Analysis L. Beirão da Veiga 1, L.. Pavarino 1, S. Scacchi 1, O. B. Widlund 2, and S. Zampini 3 1 ntroduction The main goal of this paper is to design, analyze, and test a BDDC

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Some examples in domain decomposition

Some examples in domain decomposition Some examples in domain decomposition Frédéric Nataf nataf@ann.jussieu.fr, www.ann.jussieu.fr/ nataf Laboratoire J.L. Lions, CNRS UMR7598. Université Pierre et Marie Curie, France Joint work with V. Dolean

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 1 FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik, Universität

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners 17 th International Conference on Domain Decomposition Methods St. Wolfgang/Strobl, Austria July 3-7, 2006 Clark R. Dohrmann Sandia National

More information

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Nina Dokeva and Wlodek Proskurowski University of Southern California, Department of Mathematics Los Angeles,

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Jae Heon Yun and Yu Du Han

Jae Heon Yun and Yu Du Han Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 495 509 MODIFIED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC POSITIVE DEFINITE MATRIX Jae Heon Yun and Yu Du Han Abstract. We propose

More information

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM C. Canuto 1, L. F. Pavarino 2, and A. B. Pieri 3 1 Introduction Discontinuous Galerkin (DG) methods for partial differential

More information

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Nina Dokeva and Wlodek Proskurowski Department of Mathematics, University of Southern California, Los Angeles,

More information

On the choice of abstract projection vectors for second level preconditioners

On the choice of abstract projection vectors for second level preconditioners On the choice of abstract projection vectors for second level preconditioners C. Vuik 1, J.M. Tang 1, and R. Nabben 2 1 Delft University of Technology 2 Technische Universität Berlin Institut für Mathematik

More information

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Jakub Šístek1 joint work with Jan Březina 2 and Bedřich Sousedík 3 1 Institute of Mathematics of the AS CR Nečas Center

More information

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03024-7 An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Michel Lesoinne

More information

Sharp condition number estimates for the symmetric 2-Lagrange multiplier method

Sharp condition number estimates for the symmetric 2-Lagrange multiplier method Sharp condition number estimates for the symmetric -Lagrange multiplier method Stephen W. Drury and Sébastien Loisel Abstract Domain decomposition methods are used to find the numerical solution of large

More information

A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM

A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM SIAM J. MATRIX ANAL. APPL. Vol. 27, No. 4, pp. 1056 1068 c 2006 Society for Industrial and Applied Mathematics A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM ROBERT BRIDSON AND CHEN GREIF Abstract.

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation Fourteenth nternational Conference on Domain Decomposition Methods Editors: smael Herrera, David E Keyes, Olof B Widlund, Robert Yates c 23 DDMorg 18 Balancing Neumann-Neumann for (n)compressible Linear

More information

RESEARCH ARTICLE. A strategy of finding an initial active set for inequality constrained quadratic programming problems

RESEARCH ARTICLE. A strategy of finding an initial active set for inequality constrained quadratic programming problems Optimization Methods and Software Vol. 00, No. 00, July 200, 8 RESEARCH ARTICLE A strategy of finding an initial active set for inequality constrained quadratic programming problems Jungho Lee Computer

More information

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems U. Langer A. Pohoaţǎ O. Steinbach 27th September 2004 Institute of Computational Mathematics Johannes Kepler University

More information

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Qiya Hu 1, Shi Shu 2 and Junxian Wang 3 Abstract In this paper we propose a substructuring

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 31, pp. 384-402, 2008. Copyright 2008,. ISSN 1068-9613. ETNA ON THE EQUIVALENCE OF PRIMAL AND DUAL SUBSTRUCTURING PRECONDITIONERS BEDŘICH SOUSEDÍK

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition Clemens Pechstein Institute of Computational Mathematics,

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 MÉXICO 2014 MEMORIAS GGMC INSTITUTO DE GEOFÍSICA UNAM MIEMBROS DEL GGMC Dr. Ismael Herrera Revilla iherrerarevilla@gmail.com Dr. Luis Miguel de

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

A Unified Framework for Adaptive BDDC

A Unified Framework for Adaptive BDDC www.oeaw.ac.at A Unified Framework for Adaptive BDDC C. Pechstein, C.R. Dohrmann RICAM-Report 2016-20 www.ricam.oeaw.ac.at A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC CLEMENS PECHSTEIN 1 AND CLARK R. DOHRMANN

More information

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS EDMOND CHOW Abstract. Many algebraic multilevel methods for solving linear systems assume that the slowto-converge, or algebraically smooth error

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

Recent advances in HPC with FreeFem++

Recent advances in HPC with FreeFem++ Recent advances in HPC with FreeFem++ Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann Fourth workshop on FreeFem++ December 6, 2012 With F. Hecht, F. Nataf, C. Prud homme. Outline

More information

Various ways to use a second level preconditioner

Various ways to use a second level preconditioner Various ways to use a second level preconditioner C. Vuik 1, J.M. Tang 1, R. Nabben 2, and Y. Erlangga 3 1 Delft University of Technology Delft Institute of Applied Mathematics 2 Technische Universität

More information

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS JING LI AND XUEMIN TU Abstract A variant of balancing domain decomposition method by constraints

More information

Multispace and Multilevel BDDC

Multispace and Multilevel BDDC Multispace and Multilevel BDDC Jan Mandel Bedřich Sousedík Clark R. Dohrmann February 11, 2018 arxiv:0712.3977v2 [math.na] 21 Jan 2008 Abstract BDDC method is the most advanced method from the Balancing

More information

Scalable BETI for Variational Inequalities

Scalable BETI for Variational Inequalities Scalable BETI for Variational Inequalities Jiří Bouchala, Zdeněk Dostál and Marie Sadowská Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University

More information

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS lectronic Transactions on Numerical Analysis. Volume 45, pp. 524 544, 2016. Copyright c 2016,. ISSN 1068 9613. TNA AN ADAPTIV CHOIC O PRIMAL CONSTRAINTS OR BDDC DOMAIN DCOMPOSITION ALGORITHMS JUAN G. CALVO

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Overlapping domain decomposition methods withfreefem++

Overlapping domain decomposition methods withfreefem++ Overlapping domain decomposition methods withfreefem++ Pierre Jolivet 1,3, Frédéric Hecht 1, Frédéric Nataf 1, and Christophe Prud homme 2 1 Introduction Developping an efficient and versatile framework

More information

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 6 [Version: 2002/09/18 v1.02] Convergence analysis of a balancing domain decomposition method for solving a class of indefinite

More information

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Axel Klawonn 1 and Olof B. Widlund 2 1 Universität Duisburg-Essen, Campus Essen, Fachbereich Mathematik, (http://www.uni-essen.de/ingmath/axel.klawonn/)

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation

An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation Victorita Dolean, Pierre Jolivet, Frédéric ataf To cite this version: Victorita Dolean, Pierre Jolivet, Frédéric

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

PANM 17. Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D

PANM 17.  Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D PANM 17 Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský

More information

Overlapping Domain Decomposition Methods with FreeFem++

Overlapping Domain Decomposition Methods with FreeFem++ Overlapping Domain Decomposition Methods with FreeFem++ Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, Christophe Prud Homme To cite this version: Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, Christophe

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

An Iterative Domain Decomposition Method for the Solution of a Class of Indefinite Problems in Computational Structural Dynamics

An Iterative Domain Decomposition Method for the Solution of a Class of Indefinite Problems in Computational Structural Dynamics An Iterative Domain Decomposition Method for the Solution of a Class of Indefinite Problems in Computational Structural Dynamics Charbel Farhat a, and Jing Li a a Department of Aerospace Engineering Sciences

More information

Finite element programming by FreeFem++ advanced course

Finite element programming by FreeFem++ advanced course 1 / 37 Finite element programming by FreeFem++ advanced course Atsushi Suzuki 1 1 Cybermedia Center, Osaka University atsushi.suzuki@cas.cmc.osaka-u.ac.jp Japan SIAM tutorial 4-5, June 2016 2 / 37 Outline

More information

Coupled FETI/BETI for Nonlinear Potential Problems

Coupled FETI/BETI for Nonlinear Potential Problems Coupled FETI/BETI for Nonlinear Potential Problems U. Langer 1 C. Pechstein 1 A. Pohoaţǎ 1 1 Institute of Computational Mathematics Johannes Kepler University Linz {ulanger,pechstein,pohoata}@numa.uni-linz.ac.at

More information

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Outline A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Azzam Haidar CERFACS, Toulouse joint work with Luc Giraud (N7-IRIT, France) and Layne Watson (Virginia Polytechnic Institute,

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva June 2015 Invents an Iterative Method in a Letter (1823), in a letter to Gerling: in order to compute a least squares solution based on angle measurements

More information

FETI Methods for the Simulation of Biological Tissues

FETI Methods for the Simulation of Biological Tissues SpezialForschungsBereich F 32 Karl Franzens Universita t Graz Technische Universita t Graz Medizinische Universita t Graz FETI Methods for the Simulation of Biological Tissues Ch. Augustin O. Steinbach

More information