SYMBOLIC ANALYSIS OF LINEAR ELECTRIC CIRCUITS

Similar documents
Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

48520 Electronics & Circuits: Web Tutor

Chapter 3 Methods of Analysis: 1) Nodal Analysis

ECE 2100 Circuit Analysis

EE292: Fundamentals of ECE

Chapter 4 Homework solution: P4.2-2, 7 P4.3-2, 3, 6, 9 P4.4-2, 5, 8, 18 P4.5-2, 4, 5 P4.6-2, 4, 8 P4.7-2, 4, 9, 15 P4.8-2

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

ENGR 2405 Class No Electric Circuits I

Kirchhoff's Laws and Circuit Analysis (EC 2)

Automatic Formulation of Circuit Equations

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Series & Parallel Resistors 3/17/2015 1

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 2 Analysis Methods

ECE 1311: Electric Circuits. Chapter 2: Basic laws

Voltage Dividers, Nodal, and Mesh Analysis

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Thevenin Norton Equivalencies - GATE Study Material in PDF

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Parallel Circuits. Chapter

A~(A'~) = i,(t) (1.34)

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

Introductory Circuit Analysis

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

DC STEADY STATE CIRCUIT ANALYSIS

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

Kirchhoff's Laws and Maximum Power Transfer

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.


Chapter 10 AC Analysis Using Phasors

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

CIRCUIT ANALYSIS TECHNIQUES

Chapter 2 Circuit Elements

Lecture Notes on DC Network Theory

Nodal and Loop Analysis Techniques

arxiv: v1 [cs.oh] 18 Jan 2016

Lecture #3. Review: Power

Engineering Fundamentals and Problem Solving, 6e

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

Fundamental of Electrical circuits

COOKBOOK KVL AND KCL A COMPLETE GUIDE

Network Graphs and Tellegen s Theorem

Basic Electrical Circuits Analysis ECE 221

Electric Circuits I. Midterm #1

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

Basics of Network Theory (Part-I)

Chapter 5. Department of Mechanical Engineering

Kirchhoff s laws. Figur 1 An electric network.

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

Chapter 4. Techniques of Circuit Analysis

Chapter 7. Chapter 7

Propedeútico: Circuitos 2. Systematic Nodal Analysis. Dr. Arturo Sarmiento Reyes. INAOE Coordinación de Electrónica CA D Group. Mayo 16 Junio 10, 2016

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

mywbut.com Mesh Analysis

EECE251 Circuit Analysis I Lecture Integrated Program Set 1: Basic Circuit Concepts and Elements

Review of Circuit Analysis

Chapter 4: Methods of Analysis

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

Integrating Circuit Simulation with EIT FEM Models

Consider the following generalized simple circuit

E2.2 Analogue Electronics

Discussion Question 6A

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Chapter 10: Sinusoidal Steady-State Analysis

EECS 42 Spring 2001 Lecture 14. W. G. Oldham MORE NODAL ANALYSIS. Today: Dependent Sources Examples

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

6. MESH ANALYSIS 6.1 INTRODUCTION

Systematic Circuit Analysis (T&R Chap 3)

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

Simple Resistive Circuits

Electric Circuits I. Midterm #1 Examination

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

Direct Current Circuits

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

D C Circuit Analysis and Network Theorems:

EE40 KVL KCL. Prof. Nathan Cheung 09/01/2009. Reading: Hambley Chapter 1

Electrical Technology (EE-101-F)

THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS

Small Signal Model. S. Sivasubramani EE101- Small Signal - Diode

AC Circuit Analysis and Measurement Lab Assignment 8

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

Introduction to Electricity

Today in Physics 217: circuits

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

Sirindhorn International Institute of Technology Thammasat University at Rangsit

3.1 Superposition theorem

DC CIRCUIT ANALYSIS. Loop Equations

Appendix A Installing QUCS

DC Circuit Analysis + 1 R 3 = 1 R R 2

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Problem Set 4 Solutions

Chapter 4: Techniques of Circuit Analysis

INTRODUCTION TO ELECTRONICS

Phy301- Circuit Theory

Transcription:

SYMBOLIC ANALYSIS OF LINEAR ELECTRIC CIRCUITS I. Tomčíová Technical university in Košice, Slovaia Abstract In present days there exist lots of programs such as PSPICE, TINA, which enable to solve circuits numerically. But sometimes it is useful to use program which offers symbolic results for solved circuit. The paper is devoted to the creation of application program for symbolic analysis of linear circuit system containing independent and dependent sources of DC voltage and/or current. This program is based on nodal analysis. 1 Principles of Nodal Analysis and its Formulation Nodal analysis is method for solving linear electric circuits. Unnown quantities are nodal voltages. A nodal voltage is a voltage between a node pair, which is formed by a nonference node and a reference node. A node is a point of connection of two or more circuit elements. A word formulation of nodal analysis procedure is following [1]: The first step is determination the number of nodes in the circuit. One of the nodes is selected as the reference node and a node voltage is assigned to each nonreference node. For an -node circuit there are N nodal voltages, so Nu 1 linearly independent equations are required to u 1 solve for the nodal voltages. The second step is a writing a constraint equation for each independent or dependent voltage source in the circuit in terms of the assigned nodal voltages using Kirchhoff's voltage law (KVL). If the th voltage source u S is connected between a nonreference node p and the reference node, then the nodal voltage up n is given by source voltage accounting for the polarities, and the constraint equation taes the following form: ( n) ( S) up =± u (1) If the th voltage source u S is connected between a nonreference node p and a nonreference node q, then the difference of the nodal voltages up n and uq ( n), assigned to these nonreference nodes, is given by source voltage accounting for the polarities, and the constraint equation taes the form: ( n) ( n) ( S) up uq =± u (2) Each constraint equation represents one of the required linearly independent equations. For each dependent voltage source it is necessary to express the controlling variable in terms of the nodal voltages. For a circuit containing N voltage sources, with N 1nonref connected between a nonreference node and the reference node and N 2nonref connected between two nonreference ( 1nonref) ( 2nonref) nodes, a number of the constraint equations is N = N + N and these equations yield N linearly independent equations. The remaining N N u 1 linearly independent equations must be formulated by applying ( 2nonref) Kirchhoff's current law (KCL) at each of Nu 1 N N nonreference nodes not connected to a voltage source, and at each of N 2nonref supernodes, in case that only one voltage source is connected to each node. A supernode is a closed surface that bounded two nonreference nodes connected by a voltage source. N u

Because MATLAB (MATrix LABoratory) is a tool for matrix solving of problems, it is useful to create a matrix formulation of nodal analysis. We assume a proper linear electric circuit containing N nodes and N branches. Let us consider that a resistor with resistance R u 0 R, an ideal current source (independent or dependent) with a current i S and an ideal voltage source with a voltage u ( S) are connected in a branch v ( = 1,2,..., nv ) with nodes p and q (Figure 1). v Figure 1: The th circuit branch connected to the node p and the node q KCL written in the matrix form is [2]: ( v AI ) = 0 where I v is a matrix of branch currents i ( v) of order ( N v,1), A being the incidence matrix of order ( Nu 1, Nv ) - a matrix with elements amn which express incidence between nodes and branches of circuit and their value is { + 1, 1, 0}. The branch current I v can be expressed (Figure 1): ( v) ( R) ( S) I = I + I ( S) where I R is a matrix of resistor currents i ( of order ( Nv,1), I being a matrix of current source currents i S of order ( Nv,1). (3) (4) The resistor current I R will be: ( R ) ( ( v I = G U ) + U ( S ) ) (5) G v v U v where is a diagonal matrix of resistor conductance of order ( N, N ), being a matrix of branch voltages of order ( Nv,1), U S being a matrix of voltage source voltages of order ( Nv,1). Each branch voltage can be expressed in terms of a nodal voltage [1]: A T U ( v) T ( n) = A U U n where is a transpose matrix to a matrix A, being a matrix of nodal voltages of order ( N 1, 1). u Substituting equations (4), (5) and (6) into equation (3), we obtain: T ( n ) ( S ) ( S ) AGA U + AGU + AI = 0 The equation (7) represents a formulation of nodal equations in terms of incidence matrix electric circuits containing current and/or voltage sources (independent and dependent). U S in the equation (7) taes the following form: ( S) ( IVS) ( CCVS) ( VCVS) U = U + U + U A (6) (7) for (8)

where ( U IVS) U CCVS is a matrix of voltages independent voltage sources with a positive sign if its polarity is not oriented corresponding to a branch orientation, being a matrix of voltages of currentcontrolled voltage sources (CCVS), sources (VCVS). V CCVS V VCVS U CCVS U VCVS U VCVS in the equation (8) is following: U being a matrix of voltages of voltage-controlled voltage ( CCVS ) ( CCVS ) ( v ) = V where is a matrix of coupling coefficients between voltages CCVS and controlling currents with a positive sign if its polarity is not oriented corresponding to an orientation of branch in which is the source, and simultaneously a polarity of controlling current is corresponding to an orientation of branch in which it is placed. in the equation (8) is following: ( VCVS ) ( VCVS ) ( v ) U = V U where is a matrix of coupling coefficients between voltages VCVS and controlling voltages with a positive sign if its polarity is not oriented corresponding to an orientation of branch in which is the source, and simultaneously a polarity of controlling voltage is oriented corresponding to an orientation of branch in which it is placed. I S in the equation (7) is following: ( S) ( ICS) ( CCCS) ( VCCS) I = I + I + I ( where I ICS) is a matrix of currents independent current sources with a positive sign if its polarity is oriented corresponding to a branch orientation, I CCCS being a matrix of currents of currentcontrolled current sources (CCCS), I VCCS being a matrix of currents of voltage-controlled current sources (VCCS). I CCCS in the equation (11) is following: ( CCCS ) ( CCCS ) ( v ) V CCCS V VCCS I = V where is a matrix of coupling coefficients between currents CCCS and controlling currents with a positive sign if its polarity is oriented corresponding to an orientation of branch in which is the source, and simultaneous a polarity of controlling current is oriented corresponding to an orientation of branch in which it is placed. I VCCS in the equation (11) is following: ( VCCS ) ( VCCS ) ( v ) I = V U where is a matrix of coupling coefficients between currents VCCS and controlling currents with a positive sign if its polarity is oriented corresponding to an orientation of branch in which is the source, and simultaneous a polarity of controlling current is oriented corresponding to an orientation of branch in which it is placed. Substituting equations (8) up to (13) into equation (7) we obtain the matrix formulation of nodal equations for linear circuits having independent and/or dependent sources: * where G n is a node conductance matrix of order ( Nu 1, Nu 1), I n being a column matrix of short-circuiting currents produced by the current sources and voltage sources of order ( N 1, 1). I I *( n) ( n) ( n) G U = I The obtained system of the nodal equations (14) must be treated for ideal current and voltage sources by following way. u (9) (10) (11) (12) (13) (14)

An internal resistance of an ideal current source that is connected in the th circuit branch is infinitely large and so its internal conductance is equal zero ( g 0 ). An internal resistance of an ideal voltage source that is connected in the th circuit branch is equal zero and so its internal conductance is infinitely large ( g ). For that reason it is necessary to arrange the system of nodal equation (14). If a voltage source is connected between nonreference node p and reference node, a limit for g of the left-hand side of equation written for nonreference node p must be found Nu 1 * g pj lim u j g n n (15) j= 1 g as well as a limit for g of right-hand side of equation written for nonreference node p lim g and the constraint equation in the form (1) will be obtained by this arrangement. If a voltage source is connected between a nonreference node p and a nonreference node q, a limit for g of the both sides of equation written for nonreference node p must be found and the constraint equation in the form (2) will be obtained by this arrangement; but one more equation is needed, which will be provided by a nodal equation for supernode p q in such a way, that we add the equation for nonreference node p and the equation for nonreference node q If any coefficient a term * g pj n Nu 1 j= 1 * * ( gpj + gqj ) i ( n) p g n n ( n) ( n) ( n) uj = ip + iq in the equation (17) includes a term ± g (independent voltage source) or * gqj n ±ρggll (CCVS) or a term ±α g (VCVS), then a coefficient includes a term g or a term ρggll or a term αg, and there is no any coefficient with term g in the equation (17). 2 Results Two selected circuits will be presented as example of nodal analysis by using the program that generates the system of symbolic nodal equations. The first one is a circuit having independent sources only (Figure 1 left) and the second one is a circuit having independent and dependent sources (Figure 1 right). (16) (17) Figure 1: An example of circuit having independent sources only (left) and a circuit having dependent sources (right) After assigning an input data (parameters of the circuit elements, the incidence matrix and the reference node) the program generates a system of symbolic nodal equations. This system is

subsequently solved and the nodal voltages are obtained in numeric form. The branch voltages and the branch currents are obtained in both symbolic and numeric form. Referring to Figure 1, the program generates the system of equations (Figure 2 left), which consists of one constraint equation and two nodal equations for non reference nodes 2 and 4. For given values of circuit parameters ( R = 20 Ω, R = 4 Ω, R = 12 Ω, ig = 0.3A, ig = 0.9A, ug = 12V ) 1 2 3 4 5 6 the program computes numeric values of nodal voltages (Figure 2 right). Figure 2: Symbolic equations generated by program for circuit having independent sources (left) and numeric values of nodal voltages (right) The obtained results of the branch voltages (Figure 3 left) and the branch currents (Figure 3 right) for circuit having independent sources and the values of circuit element parameters are given in Figure 3. Figure 3: The branch voltages (left) and the branch currents (right) for circuit having independent sources Referring to Figure 1 (right), the program generates the system of equations (Figure 4 left), which consists of three constraint equations and two nodal equations, one of them is for a nonreference node 5 and the other one is for a supernode 1-4. For given values of circuit parameter( R1 = R2 = R3 = R4 = R5 = R6 = R7 = 1 Ω, ug8 = 12V, ug9 = 6V, ig10 =β ix = 2i x A, ug =α u = 2u V) the program computes the following numeric values of nodal voltages 11 x x (Figure 4 right): Figure 4: Symbolic equations generated by program for circuit having dependent sources (left) and numeric values of nodal voltages (right) The obtained results of the branch voltages (Figure 5 left) and the branch currents (Figure 5 right) for circuit having dependent sources and the given values of circuit element parameters are in Figure 5.

Figure 5: The branch voltages (left) and the branch currents (right) for circuit having dependent sources References [1] R.C.Dorf, J.A.Svoboda: Introduction to Electric Circuits. John Wiley &Sons, Inc., 2007. [2] D. Mayer: Introduction in Theory of Electric Circuits. SNTL Prague, 1984 (in Czech). [3] MATLAB - User s Guide, MathWors 2009. Iveta Tomčíová Technicá univerzita v Košiciach, Faulta eletrotechniy a informatiy, Katedra teoreticej eletrotechniy a eletricého merania, Par Komensého 3, 042 00 Košice e-mail: iveta.tomciova@tue.s