Organometallics Study Meeting

Similar documents
Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Organometallic Chemistry and Homogeneous Catalysis

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Organometallic Chemistry and Homogeneous Catalysis

PART 2. -BONDED ORGANOMETALLICS

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

O CH 3. Mn CH 3 OC C. 16eelimination

Introduction to Organometallic Compounds. Metal. R MgX. Wilkinson s catalyst is used for hydrogenation of alkene and alkyne. Wilkinson's catalyst

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Organometallic Chemistry and Homogeneous Catalysis

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Chapter 2 The Elementary Steps in TM Catalysis

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles

Carbenes and Olefin Metathesis

Nucleophilic attack on ligand

Three Type Of Carbene Complexes

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes

Metal Hydrides, Alkyls, Aryls, and their Reactions

Oxidative Addition and Reductive Elimination

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom.

Organometallic Chemistry

Insertion and elimination. Peter H.M. Budzelaar

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Organometallic Chemistry and Homogeneous Catalysis

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

Inorganic Chemistry Year 3

Chapter 13 Conjugated Unsaturated Systems

ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS

Carbenes and Carbene Complexes I Introduction

CHEMISTRY 263 HOME WORK

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Double and Triple Bonds. The addition of an electrophile and a

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Atomic Structure. Atomic Structure. Atomic Structure. Atomic Structure. Electron Configuration. Electron Configuration

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

Lecture 11 Organic Chemistry 1

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Module 9 : Complexes of π bound ligands. Lecture 3 : Metal cyclopentadienyl complexes. Objectives. In this lecture you will learn the following

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

σ Bonded ligands: Transition Metal Alkyls and Hydrides

Explain below in one sentence each (a) how we deal with overall charges on the complex in the two methods and (b) how this can be rationalized.

Metallocenes WILEY-VCH. Volume 2. Synthesis Reactivity Applications. Edited by Antonio Togni and Ronald L. Halterman

R N R N R N. primary secondary tertiary

Molecular Orbital Theory (MOT)

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chem 263 Nov 3, 2016

Introduction to Organic Chemistry

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 4 Apr 11: Bent Metallocenes and Ziegler Natta Catalysis

Re2 O 7 +17CO. WCl 6 +CO+Et 3 Al

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

KOT 222 Organic Chemistry II

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Introduction to Organometallic Chemistry. Stability of organometallic reagents

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry

Fundamentals of Organic Chemistry

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

[3.3] Energy Level Diagrams and Configurations

M Strategies to introduce Free coordination sites

CHEM 251 (4 credits): Description

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes

EPIC LIGAND SURVEY: METAL ALKYLS - I

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

Additions to the Carbonyl Groups

Suggested solutions for Chapter 40

Elementary Organometallic Reactions

Module III: Aromatic Hydrocarbons (6 hrs)

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued

Upon successful completion of this course, the student will be able to:

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles

6 The polyatomic molecules (B)

FINAL EXAMINATION 12/17/93.

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

acetaldehyde (ethanal)

Electrophilic Aromatic Substitution

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2

The following molecules are related:

Bond length (pm) Bond strength (KJ/mol)

Transcription:

rganometallics Study eeting 04/21/2011.itsunuma 1. rystal field theory(ft) and ligand field theory(lft) FT: interaction between positively charged metal cation and negative charge on the non-bonding electrons of the ligand LFT: molecular orbital theory(back donation...etc) ctahedral(figure 9-1a) d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. ligandfieldsplittingparameter( 0 ):energybetweene g orbitalandt 2g orbital 1) high oxidation state 2) 3d<4d<5d 3) spectrochemical series I - <Br - <S 2- <S - < - < 3 -,F - <( 2 ) 2, - <ox, 2- < 2 <S - < 5 5, 3 < 2 2 2 2 <bpy,phen< 2 - < 3 -, 6 5 - < - < cf) pairing energy: energy cost of placing an electron into an already singly occupied orbital Low spin: If 0islarge,thenthelowerenergyorbitals(t 2g )arecompletelyfilledbeforepopulationofthehigherorbitals(e g ) igh spin: If 0issmallenoughthenitiseasiertoputelectronsintothehigherenergyorbitalsthanitistoputtwointothesamelow-energy orbital, because of the repulsion resulting from matching two electrons in the same orbital ex)(t 2g ) 3 (e g ) n (n=1,2) Tetrahedral(figure 9-1b), Square planar(figure 9-1c) LFT(figure 9-3, 9-4) -,Br - :lower 0(figure9-4a) :higher 0(figure9-4b) 2. Ligand metal complex hapticity formal chargeelectron donation alkyl 1-1 2 hydride 1-1 2 X halogen 1-1 2 alkoxide 1-1 2 acyl 1-1 2 1 -alkenyl 1-1 2 1 -allyl 1-1 2 acetylide 1-1 2 carbene 1 0 2 carbene 1-2 4 carbyne 1-3 6 carbonyl 1 0 2 metal complex hapticity formal chargeelectron donation 6 -arene 6 0 6 -hydride 1-1 2 X -halogen 1-1 4 -alkoxide 1-1 4 -carbonyl 1 0 2 2 -alkylidene 1-2 4 3 -carbonyl 1 0 2 3 -alkylidine 1-3 6 2 -alkene 2 0 2 2 -alkyne 2 0 2 3 -allyl 3-1 4 4 -diene 4 0 4 5 -cyclo pentadienyl 5-1 6 1

3. d-electron o o(iv),d 2,18e o(iv):d 2 =2e 2( 5 5 ) - :2x6e=12e 2 - :2x2e=4e () 4 o o() 4 o(0),d 9,18e o(0):d 9 =9e 4():4x2e=8e o-o:1x2e=2e (valency), [d-electron of (0)]-[formal charge], [d-electron of metal] +[electron of ligand] Early transition metal: smaller d-electron number(group 4, 5...) Late transition metal: larger d-electron number(group 9, 10...) 4. 18-electron rule Valence shells of transition metal consists of nine valence orbitals(s, p, d), which collectively can accommodate 18 electrons (same electron configuration as noble gas) either as nonbinding electron pairs or as bonding electron pairs. 18-electron complex: coordinatively saturated complex non-18-electron complex: coordinatively unsaturated complex Violations to the 18-electron rule ctahedral [o( 2 ) 6 ] 2+ (19e) [i(en) 3 ] 2+ (20e) V() 6 (17e) W( 3 ) 6 (12e) late transition metal: small 0 occupationofe g earlytransitionmetal Square planar [( 6 5 ) 3 P] 2 PdX 2 (16e) [( 6 5 ) 3 P] 2 Ir()X(16e) instabilityofd x2-y2 5. -bonding ligand 5.1 alkyl complex -bond:130~300kjmol -1 -hydride elimination stable alkyl complexes W( 3 ) 6 W(VI),d 0,12e Zr( 2 6 5 ) 4 Zr(IV),d 4,8e Ti[ 2 ( 3 ) 3 ] 4 Ti(IV),d 0,8e synthesis of alkyl complexes r 4 r(iv),d 2,10e Fe 4 Fe(IV),d 4,12e L 2 Pt 1) etathetical exchange using a carbon nucleophile P 3 Pt P 3 P 3 n-bu P 3 + 2n-BuLi n-bu Pt 2) etal centered nucleophile Fe - a + Fe(0),d 8,18e + Br Fe - Fe(II),d 6,18e 3) xidative addition 3 P Ir + Br P e 3 P e Ir 3 Br P 3 Ir(I),d 8,16e Ir(III),d 8,18e 4) Insertion P 3 Pt P 3 P 3 Et P 3 + 2 = 2 Pt 5.2 hydride complex -bond:240~350kjmol -1 synthesis of hydride complexes 1) etal halide + reductant 3) xidative addition u 2 (P 3 ) 3 + ab 4 + P 3 u 2 (P 3 ) 4 u(ii),d 6,16e u(ii),d 6,18e Ir()(P 3 ) 2 Ir(I),d 8,16e + 2 Ir 2 ()(P 3 ) 2 Ir(III),d 6,18e 2) Protonation p 2 W 2 + + [p 2 W 3 ] + W(IV),d 2,18e W(VI),d 0,18e [o( 4 )] - + + o( 4 ) o(-i),d 10,18e o(i),d 8,18e h(p 3 ) 3 h(i),d 8,16e + 2 h 2 (P 3 ) 3 h(iii),d 6,18e 2

4) rtho metallation, cyclo metallation 5) -hydride elimination W[P( 3 ) 3 ] 6 W(0),d 6,18e Pe 2 Pe W 3 Pe Pe 3 3 W(II),d 4,16e u 2 (P 3 ) 4 + 2K( 3 ) 2 u 2 (P 3 ) 4 + 2K + 2acetone u(ii),d 6,18e u(ii),d 6,18e eactivity of hydride complex 1) - p 2 Zr Zr(IV),d 0,16e p 2 Zr 2 Zr(IV),d 0,16e p 2 Zr 2 3 Zr(IV),d 0,16e 2). 2[o( 5 )] 3- o(ii),d 6,18e 3) + 4)insertiontoalkeneandalkyne 5) 2 elimination [o( 4 )] - + + o( 4 ) o(-i),d 10,18e o(i),d 8,18e + 2[o( 5 )] 3- o(ii),d 7,17e + 5.3 molecular hydrogen complex y 3 P W Py 3 W(0),d 6,18e 3 P u P 3 3 P u(ii),d 6,18e r r(0),d 6,18e weak back donation to hydrogen 5.4 agostic interaction agostic interaction: interaction of a coordinately-unsaturated transition metal with a - bond (two electrons involved in the - bond enter the empty d-orbital of a transition metal, resulting in a two electron three center bond) ex) P P Ti -agostic interaction P P Ti -agostic interaction 6. donation, back-donation 6.1 carbonyl complex d n, donation d LU n, back-donation ex) i oo...etc 6.2 nitrocyl complex L n-1 - equivalent L n + L n + ex) 3 P u P 3 3 P Ir P 3 6.3 molecular nitrogen complex 6.4 molecular oxygen complex Zr Zr basic metal end-on ( 3 ) 5 o o( 3 ) 5 5+ P Ir 2 Et P 2 Et 6.5 molecular carbon dioxygen complex 1-2 -, 1 - high oxidation metal low oxidation metal 3

6.6 phosphine complex basicity:p 3 >P 2 Ar>PAr 2 >PAr 3 acceptorability:>>>pf 3 >P 3 >P 2 >PBr 2 >P() 3 >P 3 >> 2 > 3 a. Structural factor d - *interaction Tolman cone angle: measure of size of ligand bite angle: bidentate ligand X P X X d - *interaction P Table 9-7 P P Table 9-8 b. electronic factor ( 3 P)i() 3 :thereisastrongcorrelationbetween andelectrondonatingabilityofphosphineligand. Table 9-9 6.7 carbene complex Schrock carbene: nucleophilic carbene high oxidation state early transition metal -donor ligand hydrogen and alkyl substituents on carbenoid carbon Fisher carbene: electrophilic carbene low oxidation state middle and late transition metal -acceptor ligand -donor substituents on methylene Ta e Ln Ta(V),d 0,18e Tebbe complex Ln Ln e W W(II),d 4,18e synthesis of carbene complex Ta( 3 ) 3 (Ar) 2 hv Ta(= 2 )( 3 )(Ar) 2 W() 6 Li () 5 W Lie 3 + () 5 W e Li () 5 W e ( 5 5 ) 2 Ta e BF 4 - + ( 5 5 ) 2 Ta 2 2 =P( 3 ) 3 e Et Pt 6 5 P 3 Et Pt P 6 5 3 e W() 6 + e 1-10 7 1-10 7 e () 5 W e 1-10 7 1-10 7 7. -bonding ligand 7.1 alkene complex Dewar-hatt-Duncanson model Pt h h d, donation d *, back-donation high oxidation state anionic complex electron donating ligand 4

7.2 alkyne complex Dewar-hatt-Duncanson model can be applied to alkyne complex. n () 3 o o() 3 + () 3 o o() 3 7.3 -allyl complex B A A B 95~120 A :anti B :syn d z2 d yz syn-anti isomerization B A A B B A A B B A B A B A B A allylic rotation L L 1 2 o L L 1 2 o cf) crotyl complex: racemization, 1,3-disubstituted allylic complex: syn-anti isomerization 7.4 diene complex molecular orbital(figure 9-20) diene metallacyclopentene back donation Zr,Ta,b Zr 1 2 Zr 1 2 Zr 1 2 Zr 1 2 racemic 2 1 () 3 Fe 1 2 () 3 Fe 1 () 3 Fe 2 7.5 cyclopentadienyl complex 5-5 5 1-5 5 3 -indenyl metallocene (figure 9-22) ex) ferrocene 18e cobaltcene 19e nickellocene 20e p*= 5 ( 3 ) 5 Ti Ta o synthesis of cyclopentadienyl complex 1) metal salt + cyclopentadienyl anion Fe 2 + 2 5 5 a ( 5 5 ) 2 Fe+ 2a Ti(IV),d 0,16e electrophilic Ta(V),d 0,18e o(iv),d 2,18e nucleophilic 2) redutive condition u 3 + 3 5 6 + 1.5Zn ( 5 5 ) 2 u+ 5 8 + 1.5Zn 2 5

7.5 benzene complex r r Fe r(0),d 6,18e r(0),d 6,18e F(II),d 6,18e figure 9-24 synthesis of arene complex 1)arene+metalsalt r 3 + 2 6 6 + 1/3Al 3 + 2/3Al r a 2 S 2 4 - Al 4 r r(i),d 5,17e r(0),d 6,18e 2) ligand exchange o() 6 + o o(0),d 6,18e 3) hydrogen extraction from cyclohexadiene u 3 + u u L o L u(ii),d 6,18e u(ii),d 6,18e 6