Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson- meson continuum

Similar documents
Unquenching the quark model

arxiv: v1 [nucl-th] 17 Nov 2015

arxiv: v1 [nucl-th] 29 Jun 2015

arxiv: v1 [hep-ph] 27 Feb 2013

Jacopo Ferretti Sapienza Università di Roma

Latest developments in the Spectroscopy of Heavy Hadrons

Heavy Quark Spectroscopy at LHCb

Exotic hadronic states XYZ

Puzzles in the Charmonium Sector of QCD

Valence quark contributions for the γn P 11 (1440) transition

Hadron Spectroscopy and Exotics Heavy Exotic Mesons Theory

Results on Charmonium-like States at BaBar

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

Coupled channel description for X(3872) and other XYZ mesons

BaBar s Contributions. Veronique Ziegler Jefferson Lab

Hadron-hadron Interactions

Probing of XYZ meson structure with near threshold pp and pa collisions

Recent results on spectroscopy from

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Hadronic molecules with heavy quarks

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

Charmonium & charmoniumlike exotics

arxiv: v3 [hep-ph] 19 Nov 2014

Searches for exotic mesons

Hybrid mesons spectroscopy

Meson Spectroscopy Methods, Measurements & Machines

Covariant quark-diquark model for the N N electromagnetic transitions

arxiv: v1 [hep-ph] 2 Mar 2012

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

PROBING OF STRONG INTERACTIONS AND HADRONIC MATTER WITH CHARMONIUM-LIKE STUDIES

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Chengping Shen: Beihang University, Beijing XVI International Conference on Hadron Spectroscopy (Hadron 2015) September, 2015, JLab, USA

Heavy hadron spectroscopy at Belle. Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD Mar.

Antimo Palano INFN and University of Bari, Italy On behalf of the LHCb Collaboration

Overview of N* Physics

Overview of Light-Hadron Spectroscopy and Exotics

Tetraquarks in a diquark-antidiquark model

Physics of the Proton Spin Problem. Anthony W. Thomas

Quark tensor and axial charges within the Schwinger-Dyson formalism

Microscopic Model of Charmonium Strong Decays

arxiv:hep-ph/ v1 18 Mar 2006

arxiv: v2 [hep-ph] 5 Feb 2009

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Description of Heavy Exotic Resonances

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

arxiv: v1 [hep-ex] 31 Dec 2014

Lecture 9 Valence Quark Model of Hadrons

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

χ cj Decays into B B in Quark-Pair Creation Model

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada

Strange Charmed Baryons Spectroscopy

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Oddballs in QCDSR. 3 rd workshop on the XYZ particles. Liang Tang

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Narrow States Near Thresholds: X(3872)

Questions in Quarkonium Spectroscopy

Coupled-channel effects in radiative. Radiative charmonium transitions

arxiv: v2 [hep-ex] 16 Nov 2007

Peng Guo. Physics Department & NTC Indiana University - Bloomington, U.S.A.

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015

CharmSpectroscopy from B factories

Photoexcitation of N* Resonances

Baryon Spectroscopy: what do we learn, what do we need?

A comprehensive interpretation of the D sj states

X states (X(3872),...)

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

A Dyson-Schwinger equation study of the baryon-photon interaction.

The PANDA experiment at FAIR

Pion-Nucleon P 11 Partial Wave

The newly discovered Ω c resonances and doubly charmed Ξ cc state. Kazem Azizi. Oct 4, School of Physics, IPM, Tehran- Iran

PANDA. antiproton Annihilation at DArmstadt

Mass of Heavy Mesons from Lattice QCD

The missing resonance problem. E. Santopinto INFN KL2016, 1-3 february 2016

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Istituto Nazionale Fisica Nucleare

Hadronic Properties of Higher Excited Charmed Mesons 张爱林 上海大学. HFCPV-2016, Shanghai

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Probing nucleon structure by using a polarized proton beam

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

2. HEAVY QUARK PRODUCTION

Nouveaux Etats mésoniques découverts avec les usines

Multiquark states by a quark model

arxiv: v1 [hep-ph] 9 Dec 2017

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

arxiv:hep-ph/ v1 5 Sep 2006

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Part 7: Hadrons: quarks and color

Heavy mesons and tetraquarks from lattice QCD

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

P. C. Vinodkumar Department of Physics, Sardar Patel University, V. V. Nagar , INDIA

Attributes of molecule-like exotics in the heavy sector - Interlude on EFTs. - Observables that test the molecular hypothesis in

Charmed Bottom Mesons from Lattice QCD

Search for exotic charmonium states

Dynamical equilibration of stronglyinteracting

Recent Results from Jefferson Lab

Discovery of Pions and Kaons in Cosmic Rays in 1947

Transcription:

Interpretation of the X(387) as a charmonium state plus an extra component due to the coupling to the meson- meson continuum E. Santopinto (INFN), J. Ferretti (INFN), G. Galatà (UNAM) PWA7 013 Ferretti, Galatà,E. S.,Phys. Rev. C 88, 01507 (013)

Unquenching the quark model for mesons Ferretti, Galatà,E. S., Vassallo,Phys. Rev. C 86, 01504 (01) Ferretti, Galatà,E. S.,Phys. Rev. C 88, 01507 (013) Ferretti, E. S: arxiv.1306.874

The X(387) puzzle The nature of the recently discovered X(387) resonance has not been understood yet The quark structure of the X(387) resonance, observed for the first time by the Belle Collaboration and then confirmed by CDF, D0 and BABAR, still remains an open puzzle. We only know thanks to LHCb that it is 1 ++

The X(387) puzzle The nature of the recently discovered X(387) resonance has not been understood yet At the moment there are two possible interpretations for this meson. 1) A weakly- bound 1 ++ DD* molecule ) A cc state with 1 ++

X(387) as a ccbar state In this case, the resonance would correspond to a 1 1 D (J PC = - + ) state or to a 3 P 1 one [χ c1 (P), J PC = 1 ++ ] the relativized CQM predicts these states to be at energies of 3.84 and 3.95 GeV Moreover, from LHCb we know that the X(387) has 1 ++ quantum numbers

The CQM with loop corrections The calculation, accomplished in our work, is the first tentative to calculate the spectrum of charmonia within the UQM, including loop corrections, and makes it possible to perform a comparison to the already existing and to the future experimental data. the calculated masses of our mesons are the sum of a bare energy term, computed within the relativized QM by Godfrey and Isgur, and a self energy correction, computed within the unquenched quark model (UQM)

Self-energies (1) The Hamiltonian we consider, is the sum of an "ʺunperturbed"ʺ part H 0, acting only in the bare meson space, and of a second part, V, which can couple a meson state to a continuum made up of meson- meson intermediate states. The dispersive equation can be wriden as where the bare energy E a satisfies where is the self- energy

Self-energies () one has to take the contributions from various channels BC into account. A channel BC is a meson- meson intermediate state The matrix element Va,bc results from the coupling, due to the operator V, between the intermediate state BC and the unperturbed quark- antiquark wave function of the meson A one has to choose a precise form for the transition operator, V, responsible for the creation of qq pairs: our choice is that of the unquenched quark model (UQM)

( UQM ) Unquenched quark model In the unquenched quark model the effects of qq sea pairs are introduced explicitly into the constituent quark model (QM) through a QCD- inspired 3P0 pair- creation mechanism. To leading order in pair creation, the meson wave function is given by where T represents the 3P0 quark- antiquark pair creation operator

3P0 pair-creation operator The 3P0 quark- antiquark pair- creation operator is Since the operator T creates a pair of constituent quarks with an effective size, the pair creation point has to be smeared out by a gaussian factor. The pair- creation strength γ 0 is a dimensionless constant, fided to the strong decay widths of a few cc states. γ 0 is substituded by a γ effective defined as γ 0 times m_u/m_i. The matrix elements of the pair- creation operator were derived in explicit form in the harmonic oscillator basis

Godfrey and Isgur relativized QM The relativized QM by Godfrey and Isgur is a potential model for qq meson spectroscopy. This model assumes a relativistic kinetic energy, a QCD- motivated running coupling constant, a flavor dependent potential smearing parameter, and replaces factors of quark mass with quark kinetic energy

Godfrey and Isgur relativized QM The Godfrey and Isgur Hamiltonian is

Strong decay widths The decay widths are calculated within the 3P0 model Impossibile visualizzare l'immagine. La memoria del computer potrebbe essere insufficiente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il file. Se viene visualizzata di nuovo la x rossa, potrebbe essere necessario eliminare l'immagine Impossibile e inserirla visualizzare di nuovo. l'immagine. La memoria del computer potrebbe essere insufficiente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il file. Se viene visualizzata di nuovo la x rossa, potrebbe essere necessario eliminare l'immagine e inserirla di nuovo. Impossibile visualizzare l'immagine. La memoria del computer potrebbe essere insufficiente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il file. Se viene visualizzata di nuovo la x rossa, potrebbe essere necessario eliminare l'immagine e inserirla di nuovo. we calculated the strong decay widths of 3S, P, 1D and D charmonium states above the DD threshold The introduction of quark form factors determines slightly different values for the model parameters than standard 3P0 models Another difference is the use of a effective strength, introduced to suppress diagrams where heavy qq pairs are created

Strong decay widths: results

Strong decay widths: results State DD DD D D D s D s D s D s D sd s Total Exp. η c (3 1 S 0 ) 38.8 5.3 91.1 Ψ(4040)(3 3 S 1 ) 0. 37. 39.6 3.3 80.3 80± 10 h c ( 1 P 1 ) 64.6 64.6 χ c0 ( 3 P 0 ) 97.7 97.7 χ c ( 3 P ) 7. 9.8 37.0 Ψ(3770)(1 3 D 1 )7.7 7.7 7. ± 1.0 Ψ 3 (1 3 D 3 ) 1.7 1.7 η c ( 1 D ) 6.7 46.4 8.8 117.9 Ψ(4160)( 3 D 1 )11. 0.4 39.4.1 5.6 58.7 103± 8 Ψ ( 3 D ) 43.5 49.3 11.3 104.1 Ψ 3 ( 3 D 3 ) 17. 58.3 48.1 3.6.6 19.8 TABLE III: Strong decay widths in heavy meson pairs(in MeV) for 3S, P,1D and D charmonium states. The values of the model parameters are given in Table II. The symbol in the table means that a certain decay is forbidden by selection rules or that the decay cannot take place because it is below threshold.

Self-energies calculations The relativized QM is used to compute the bare energies of the cc states we need in the self energy calculation. In our case, the quantities fided to the spectrum of charmonia are the physical masses and therefore the fiding procedure is an iterative one. Once the values of the bare energies are known, it is possible to calculate the self energies of 1S, S, 1P, P and 1D cc states

Self-energies calculations () If the bare energy of the meson A is over the threshold BC The imaginary part of the self- energy is related to the decay amplitude by

Self-energies: results State J PC D D DD D D D s Ds D s D s D s D s η c η c η c J/Ψ J/ΨJ/Ψ Σ(E a ) E a M a M exp. D D Ds D s η c (1 1 S 0 ) 0 + -34-31 -8-8 - -83 306 979 980 J/Ψ(1 3 S 1 ) 1-8 -7-41 - -6-10 - -96 333 3137 3097 η c ( 1 S 0 ) 0 + -5-41 -9-8 -1-111 3699 3588 3637 Ψ( 3 S 1 ) 1-18 -4-54 - -7-10 -1-134 3774 3640 3686 h c (1 1 P 1 ) 1 + -59-48 -11-10 - -130 3631 3501 355 χ c0 (1 3 P 0 ) 0 ++ -31-7 -4-15 0-3 -15 3555 3430 3415 χ c1 (1 3 P 1 ) 1 ++ -54-53 -9-11 - -19 363 3494 3511 χ c (1 3 P ) ++ -17-40 -57-3 -8-10 0 - -137 3664 357 3556 h c ( 1 P 1 ) 1 + -55-76 -1-8 -1-15 409 3877 χ c0 ( 3 P 0 ) 0 ++ -3-86 -1-13 0-1 -14 3987 3863 χ c1 ( 3 P 1 ) 1 ++ -30-66 -11-9 -1-117 405 3908 387 χ c ( 3 P ) ++ - -4-54 -4-8 -10 0-1 -11 4053 393 397 η c (1 1 D ) + -99-6 -1-10 -1-184 395 3741 Ψ(3770)(1 3 D 1 ) 1-11 -40-84 -4 - -16 0-157 3907 3750 3775 Ψ (1 3 D ) -106-61 -11-11 -1-190 396 3736 Ψ 3 (1 3 D 3 ) 3-5 -49-88 -4-8 -10-1 -185 3936 3751

Charmonium spectrum with SE corrections Ferretti, Galatà and Santopinto, PRC88, 01507 (013) M GeV 4.0 X 387 3.6 3..8 0 1 1 0 1 3 J PC

X(387). Comparison with other works Ferretti, Galatà and Santopinto, PRC88, 01507 (013) Calculations of charmonium spectrum including continuum coupling effects (loop effects) χ c1 (P) mass [MeV] Reference 3908 Ferre9 et al. 4007.5 Eichten et al. (004) 3990 Kalashnikova 390.5 Eichten et al. (006) 3896 Pennington and Wilson References Ferretti, Galatà and Santopinto, PRC88, 01507 (013) Eichten et al., PRD69, 094019 (004) Kalashnikova, PRD7, 034010 (005) Eichten et al., PRD73, 014014 (006) Pennington and Wilson, PRD76, 07750 (007)

X(387). Charmonium interpretation Ferretti, Galatà and Santopinto, PRC88, 01507 (013) Ratio between X(387) J/Ψ ρ and X(387) J/Ψ ω decay modes and for the rate X(387) D 0 D 0 π 0 favor charmonium interpretation Meng and Chao, PRD75, 11400 (007) X(387)-> ψ(s) γ dominant with respect to X(387)-> J/ψ γ De Fazio B(B ± K ± B(B ± K ± X )B(X ψ(s)γ ) = (9.9 ±.9 ± 0.9) 10 6 X )B(X J /ψγ ) = (.8 ± 0.8 ± 0.) 10 6

X(387). Molecule interpretation Is the X(387) a meson-meson molecule? DD * The system can be found by π-exchange and forms a meson-meson molecule. Törnqvist, PRL67, 556 (1991) Prompt production incompatible with molecule interpretation Molecule of a few fm, with intrinsic fragility can be promptly produced?!? Bauer [CDF Collaboration], Int. J. Mod. Phys. A0, 3765 (005) Bignamini et al., PRL103, 16001 (009)

Bottomonium spectrum with SE corrections Ferretti and Santopinto, arxiv:1306.874

χ b (3P) system Ferretti and Santopinto, arxiv:1306.874 χ b (3P) system discovered by ATLAS Collaboration Aad et al., PRL108, 15001 (01) M = 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV (mass barycenter for the χ b (3P) signal) Confirmed by D0 Collaboration Abazov et al., PRD86, 031103 (01) M = 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV (mass barycenter for the χ b (3P) signal) Further analysis is underway to determine whether this structure is due to the χ b (3P) system or some exotic bottom quark state BB,"BB * and"b * B * χ b (3P) states lie close to decay thresholds Continuum coupling effects are important?

χ b (3P) system. Mass barycenter Ferretti and Santopinto, arxiv:1306.874 ATLAS Collaboration: M = 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV Aad et al., PRL108, 15001 (01) D0 Collaboration: M = 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV Abazov et al., PRD86, 031103 (01) Our work: M = 10.551 GeV χ b0 (3P) 10495 χ b1 (3P) 10580 χ b (3P) 10551 χ b (3P) 10578

Continuum coupling (pair creation) effects Mass shifts because of pair creation effects (self energy terms) Already shown by several authors in baryon and meson sectors Törnqvist and Zenczykowski, PRD9, 139 (1984); Z. Phys. C30, 83 (1986); Horacsek et al., PRD3, 3001 (1985); Blask et al., Z. Phys. A36, 413 (1987); Brack and Bhaduri, PRD35, 3451 (1987); Silvestre-Brac and Gignoux, PRD43, 3699 (1991); Fujiwara, Prog. Theor. Phys. 89, 455 (199); 90, 105 (1993); Morel and Capstick, nucl-th/004014. Ono and Törnqvist, Z. Phys. C3, 59 (1984); Heikkila, Ono and Törnqvist, PRD9, 110 (1984); van Beveren and Rupp, PRL91, 01003 (003); Eichten, Lane and Quigg, PRD69, 094019 (004); Hwang and Kim, PLB601, 137 (004); Kalashnikova, PRD7, 034010 (005); Pennington and Wilson, PRD76, 07750 (007); Barnes and Swanson, PRC77, 05506 (008); Li and Chao, PRD79, 094004 (009); Danilkin and Simonov, PRL105, 1000 (010); Liu and Ding, EPJC7, 1981 (01). Importance of orbital angular momentum in proton spin Bijker and Santopinto, PRC80, 06510 (009); Santopinto and Bijker, Few Body Syst. 44, 95 (008). Flavor Asymmetry of the proton Santopinto and Bijker, PRC8, 060 (010). Strangeness content of the proton Bijker, Ferretti and Santopinto, PRC85, 03504 (01).

Why Unquenching the QM? It brings Widths Moreover the coupling with the continuum, brings shifts in hadron masses, that expecially near to thresholds can not be reabsorbed into the renomalization of the parameters. Is it possible to reformulate it in terms of S-matrix? (Swanson)

Charmonium spectrum with SE corrections. X(387) Ferretti, Galatà and Santopinto, PRC88, 01507 (013) M GeV 4.0 X 387 3.6 3..8 0 1 1 0 1 3 J PC

Comparison with other calculations taking into account the continuum, open or nearby closed channels: χ c1 ( 3 P 1 ) s mass [MeV] Reference 3908 this paper 4007.5 [1] 3990 [3] 390.5 [4] 3896 [7] Eicthen (004) Kalashnikova(005) Eicthen (006) Pennigton Wilson(007)

Open charm strong decays. Results Ferretti, Galatà and Santopinto, PRC88, 01507 (013) State DD DD D D D s D s D s D s D sd s Total Exp. η c (3 1 S 0 ) 38.8 5.3 91.1 Ψ(4040)(3 3 S 1 ) 0. 37. 39.6 3.3 80.3 80± 10 h c ( 1 P 1 ) 64.6 64.6 χ c0 ( 3 P 0 ) 97.7 97.7 χ c ( 3 P ) 7. 9.8 37.0 Ψ(3770)(1 3 D 1 )7.7 7.7 7. ± 1.0 c c(1 3 D 3 ) 1.7 1.7 c c( 1 D ) 6.7 46.4 8.8 117.9 Ψ(4160)( 3 D 1 )11. 0.4 39.4.1 5.6 58.7 103± 8 c c( 3 D ) 43.5 49.3 11.3 104.1 c c( 3 D 3 ) 17. 58.3 48.1 3.6.6 19.8 Charmonium strong decay widths in open charm mesons [MeV] Parameter Value Parameters of the 3 P 0 model: fitted to the strong decays γ 0 0.510 α 0.500 GeV r q 0.335 fm 0.330 GeV 0.550 GeV 1.50 GeV m n m s m c

Unquenching the quark model for baryons R.Bijker,E..S.,PRC 80, 06510 (009), PRC 8, 060 (010); J. Ferrettii,Santopinto, Bijker, Phys. Rev. C 85, 03504 (01).

different CQMs for bayons Kin. Energy SU(6) inv SU(6) viol date Isgur-Karl non rel h.o. + shift OGE 1978-9 Capstick-Isgur rel string + coul-like OGE 1986 U(7) B.I.L. rel M^ vibr+l Guersey-R 1994 Hyp. O(6) non rel/rel hyp.coul+linear OGE 1995 Glozman Riska non rel/relplessas h.o./linear GBE 1996 Bonn rel linear 3-body instanton 001

Non strange spectrum Capstick & Isgur s Model Capstick and Isgur, Phys. Rev. D34, 809. U(7) Algebraic Model Bijker, Iachello, Leviatan, Ann. Phys. 36, 69 (1994). GB Model Glozman & Riska, Phys. Rept. 68, 63 (1996) Hypercentral CQM V(x) = - τ/x + α x Giannini, Santopinto, Vassallo, Eur. Phys. J.A1:447

Phys.Lett.. B 364,3 (1995),Eur. Phys. J.A1:447.0 1.8 1.6 N * D * D1 3 1.4 1. m ê mw 1.0 0.8 0.6 0.4 + 1 + 3 + 5 s1 1 + 7 D1 3-1 - 3-5 - 7 + 1 + 3 + 5 + 7 s1 1-1 D1 3-3 Giannini, Santopinto, Vassallo, Eur. Phys. J.A1:447

1 + 3 + 5 + 7 + 1-3 - 5-7 - 1 + 3 + 5 + 7 + 1-3 - N * D * 0.4 0.6 0.8 1.0 1. 1.4 1.6 1.8.0 m êmw

Nucleon resonces studied at Jlab and Jlab1 A 3/ D13(150) (10-3 GeV -1/ ) A 1/ D13(150) (10-3 GeV -1/ ) S 1/ D13(150) (10-3 GeV -1/ ) 180 160 140 10 100 80 60 40 0 0 0-0 -40-60 -80-100 -10-140 -160-180 0 0-0 -40-60 -80 (a) 0 1 3 4 5 Q (GeV ) Q (GeV ) hcqm PDG Maid07 Mok09 Azn09 FH 83 (b) hcqm PDG Maid07 Azn09 Mok09 FH 83 0 1 3 4 5 (c) 0 1 3 4 5 Q (GeV ) hcqm Maid07 Mok09 Azn09 Helicity amplitudes Systematic study of longitudinal and transverse helicity amplitudes in the ypercentral constituent quark model E. S.,.M. Giannini, Phys.Rev. C86 (01) 0650

E. S.,A. Vassallo, M. M. Giannini, and M. De Sanctis, Phys. Rev. C 8, 06504 (010)

Unquenched QM for baryons Bijker, Santopinto,Phys.Rev.C80:06510,009. The formalism to study the effects of the sea Bijker, ( Higher Santopinto,Phys.Rev.C80:06510,009. Fock components) preserves after renormalization, the good QM magnetic moment results. The good magnetic moment results of the CQM are preserved by the UQM, R. Bijker, E.S.,PRC88,06510(009) Genova 01 38

( UQM ) Unquenched quark model In the unquenched quark model the effects of q- antiq sea pairs are introduced explicitly into the constituent quark model (QM) through a QCD- inspired 3P0 pair- creation mechanism. To leading order in pair creation, the baryon wave function is given by where T represents the 3P0 quark- antiquark pair creation operator

Flavor Asymmetry Gottfried sum rule UQM Santopinto, Bijker, PRC 8,060(R) (010)

Proton!Strange!Magne&c!Moment!and!Radius! moment!and!radius!ar compa&ble!with!zero. Μ s Μ N 0. UCQM 0.1 SAMPLE Global An. 0 0.1 0. Ferretti, Bijker,Santopinto, PRC 85,03504 (01)

Meson spectroscopy and hybrids We are intrested in exotic of the II kind!! Mesons with qu. n. not possible for qqbar only!

light Lowest exotic state 1-+

The Same sequence was found also by LQCD for heavy quarks : This sequence has been explained by the hamiltonian approach to QCD, P. Guo, A. P. Szczepaniak,G. Galata`, A. Vassallo, eppe Galatà, Andrea Vassallo and Elena E.Santopinto, Phys. Rev. D 78, 056003 d(008) in Phys.Rev.D77:056005,008.

Conclusions Our results for the self energies of charmonia show that the pair creation effects on the spectrum of heavy mesons are relatively small. In particular, for charmonium states they are of the order of 6% However, as in the heavy quark sector CQM'ʹs can predict the meson masses with a relatively high precision, even these corrections can become signi cant, such as in the case of the X(387) In fact, we were able to calculate its mass significantly beder than with usual CQM

1 + 3 + 5 + 7 + 1-3 - 5-7 - 1 + 3 + 5 + 7 + 1-3 - N * D * 0.4 0.6 0.8 1.0 1. 1.4 1.6 1.8.0 m êmw

Unquenching the quark model for baryons R.Bijker,E..S.,PRC 80, 06510 (009), PRC 8, 060 (010);J. Ferrettii,Santopinto, Bijker Phys. Rev. C 85, 03504 (01).

Non strange spectrum Capstick & Isgur s Model Capstick and Isgur, Phys. Rev. D34, 809. U(7) Algebraic Model Bijker, Iachello, Leviatan, Ann. Phys. 36, 69 (1994). GB Model Glozman & Riska, Phys. Rept. 68, 63 (1996) Hypercentral CQM V(x) = - τ/x + α x Giannini, Santopinto, Vassallo, Eur. Phys. J.A1:447

s CQMs: Good description of the spectrum and magnetic moments Predictions of many quantities: strong couplins photocouplings helicity amplitudes elastic form factors structure functions Based on the effective degrees of freedom of 3 constituent quarks

Calculated values! Boosts to initial and final states Expansion of current to any order Conserved current G E p G M p G E n G M n De Sanctis, Giannini, Santopintoi, Vassallo Phys. Rev. C76, 0601 (007)

Further support Ratio between proton Nachtmann moments & CQ distribution n = Bloom-Gilman duality Inelastic proton scattering as elastic scattering on CQ (approximate) scaling function F(Q ) = 1/(1+ 1/6 r CQ Q ) square of CQ ff r CQ 0.-:0.4 fm Ricco,,et al., PR D67, 094004 (003)

With quark form factors De Sanctis, Giannini, Santopinto, Vassallo Phys. Rev. C76, 0601 (007)

De Sanctis, Giannini, Santopinto, Vassallo Phys. Rev. C76, 0601 (007)

E. Santopinto,A. Vassallo, M. M. Giannini, and M. De Sanctis, Phys. Rev. C 8, 0650 1 0.8 Milbrath et al. Gayou et al. Pospischil et al. Punjabi et al., Jones et al. Puckett et al. µ p G E p /GM p 0.6 0.4 0. 0 0 4 6 8 10 1 Q (GeV/c)

E. Santopinto,A. Vassallo, M. M. Giannini, and M. De Sanctis, Phys. Rev. C 8, 065 4 M p / p Q F p /F1 p 1.5 1 0.5 0 Milbrath et al. Gayou et al. Pospischil et al. Punjabi et al., Jones et al. Puckett et al. 0 4 6 8 10 1 Q (GeV/c)

Ratio µ p G Ep /G M p De Sanctis, Ferretti, Santopinto, Vassallo, Phys. Rev. C 84, 05501 (011) 57 Interacting Quark Diquark model, E. Santopinto, Phys. Rev. C 7, 001(R) (005)

A_1/( helicity amplitude ½) for the S11 A 1\ hcqm JPG 4, 753 (1998)

Is it a degrees of freedom problem? qq corrections? important in the outer region A 3\ qq corrections? D13 transition amplitu A 1\ U(7) PRC 54, 1935 (1996) hcqm JPG 4, 753 (1998)

Considering also CQMs for mesons, CQMs able to reproduce the overall trend of hundred of data but they show very similar deviations for observables such as photocouplings helicity amplitudes,

please note the medium Q behaviour is fairly well reproduced there is lack of strength at low Q (outer region) in the e.m. transitions emerging picture: quark core plus (meson or sea-quark) cloud Meson cloud Quark core

There are two possibilities: phenomenological parametrization microscopic explicit quark description

Problems 1) find a quark pair creation mechanism QCD inspired ) implementation of this mechanism at the quark level but in such a way to do not destroy the good CQMs results

Unquenching the quark model Geiger and Isgur D44, 799 (1991) 3P0 Pair-creation operator with 3P0 quantum number q anti q Note: sum over a complete set ( in flavor) of intermediate states necessary for preserving the OZI rule linear interaction is preserved after renormalization of the string constant

The good magnetic moment results of the CQM are preserved by the UCQM Bijker, Santopinto,Phys.Rev.C80:06510,009.

Flavor Asymmetry Gottfried sum rule

Proton Flavor asymmetry Santopinto, Bijker, PRC 8,060(R) (010)

Flavor asymmetry of the octect baryons in the UCQM Santopinto, Bijker, PRC 8,060(R) (010) Flavor asymmetry Nonperturbative QCD Pauli blocking (Field & Feynman, 1977) too small Pion dressing of the nucleon (Thomas et al., 1983) Meson cloud models

Flavor asymmetries of octect baryons Santopinto, Bijker, PRC 8,060(R) (010) Eichen Y.-J Zhang Alberg

3. Proton Spin Crisis 1980 s 1990 s 000 s Naive parton model 3 valence quarks QCD: contributions from sea quarks and gluons.. and orbital angular momentum HERMES, PRD 75, 01007 (007) COMPASS, PLB 647, 8 (007) Genova 01

Proton Spin COMPASS@CERN: Gluon contribution is small (sign undetermined) Unquenched quark model Ageev et al., PLB 633, 5 (006) Platchkov, NPA 790, 58 (007) More than half of the proton spin from the sea! Orbital angular momentum Suggested by Myhrer & Thomas, 008, but not explicitly calculated

4. Strangeness in the Proton The strange (anti)quarks come uniquely from the sea: there is no contamination from up or down valence quarks The strangeness distribution is a very sensitive probe of the nucleon s properties Flavor content of form factors New data from Parity Violating Electron Scattering experiments: SAMPLE, HAPPEX, PVA4 and G0 Collaborations There is no excellent beauty that hath not some strangeness in the proportion (Francis Bacon, 1561-166) Genova 01 7

Quark Form Factors Charge symmetry Quark form factors Kaplan & Manohar, NPB 310, 57 (1988) Musolf et al, Phys. Rep. 39, 1 (1994) Genova 01

Static Properties Genova 01 74

Strange Magnetic Moment Jacopo Ferretti, Ph.D. Thesis, 011 Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 03504 (01) Genova 01 75

Strange Radius Jacopo Ferretti, Ph.D. Thesis, 011 Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 03504 (01) Genova 01 76

Strange Proton Strange radius and magnetic moment of the proton Theory Lattice QCD Global analysis PVES Unquenched QM Jacopo Ferretti, Ph.D. Thesis, 011 Genova 01 Bijker, Ferretti, Santopinto, Phys. Rev. C 85, 03504 (01) 77