Sensitivity of precipitation forecasts to convective parameterization in the October 2007 Flash Flood in the Valencia Region (Eastern Spain)

Similar documents
Sensitivity of a mesoscale model to different convective parameterization schemes in a heavy rain event

Torrential events on the Spanish Mediterranean coast (Valencian Region). Spatial precipitation patterns and their relation to synoptic circulation

Atmospheric patterns for heavy rain events in the Balearic Islands

Precipitation in climate modeling for the Mediterranean region

Sensitivity of precipitation forecasts to cumulus parameterizations in Catalonia (NE Spain)

1 RAMS-forecasts comparison of typical summer atmospheric conditions over the. Western Mediterranean coast.

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR

MODELING AND MEASUREMENTS OF THE ABL IN SOFIA, BULGARIA

Diagnosis of the meteorological situation of August 16 th 2003: an extreme hail event p. 1/1

Verification of precipitation forecasts by the DWD limited area model LME over Cyprus

Multiphysics superensemble forecast applied to Mediterranean heavy precipitation situations

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

TROPICAL-LIKE MEDITERRANEAN STORMS: AN ANALYSIS FROM SATELLITE

Validation of a mesoscale meteorological simulation over Po Valley

Atmospheric circulation patterns associated with extreme precipitation amounts in Greece

TROPICAL-LIKE CYCLONES IN THE MEDITERRANEAN: IMPACTS AND COMPOSITE DAILY MEANS AND ANOMALIES OF SYNOPTIC CONDITIONS

Brief communication Calabria daily rainfall from 1970 to 2006

7.6 AEROSOL IMPACTS ON TROPICAL CYCLONES

Flash floods and heavy rain events in Catalonia: analysis of the period

SYNOPTIC AND MESOSCALE ASPECTS OF TWO FLASH FLOOD EVENTS IN EASTERN SPAIN PRODUCED BY LONG-LIVED

Effects of Soil Moisture of the Asian Continent upon the Baiu Front

Verification of 1 km ensemble wind predictions

L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study

Victor Homar * and David J. Stensrud NOAA/NSSL, Norman, Oklahoma

Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST

Mesoscale predictability under various synoptic regimes

Surface high-resolution temperature forecast Engineering

Extreme precipitation events in NW Greece

A COMPARISON OF VERY SHORT-TERM QPF S FOR SUMMER CONVECTION OVER COMPLEX TERRAIN AREAS, WITH THE NCAR/ATEC WRF AND MM5-BASED RTFDDA SYSTEMS

Evaluation of BRAMS Turbulence Schemes during a Squall Line Occurrence in São Paulo, Brazil

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Recent climatic trends over the Mediterranean and future projections. Pinhas Alpert

A tail strike event of an aircraft due to terrain-induced wind shear at the Hong Kong International Airport

ESTUDIO NUMÉRICO DE LA PREDICTABILIDAD DE UN EVENTO DE CICLOGÉNESIS MEDITERRÁNEA MEDIANTE INVERSIÓN DE VORTICIDAD POTENCIAL

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF

TRANSBOUNDARY FLOOD FORECASTING THROUGH DOWNSCALING OF GLOBAL WEATHER FORECASTING AND RRI MODEL SIMULATION

TESTING GEOMETRIC BRED VECTORS WITH A MESOSCALE SHORT-RANGE ENSEMBLE PREDICTION SYSTEM OVER THE WESTERN MEDITERRANEAN

Convective scheme and resolution impacts on seasonal precipitation forecasts

The Contribution Of Fine Scale Atmospheric Numerical Models In Improving The Quality Of Hydraulic Modelling Outputs

FORECASTING MESOSCALE PRECIPITATION USING THE MM5 MODEL WITH THE FOUR-DIMENSIONAL DATA ASSIMILATION (FDDA) TECHNIQUE

SAN JUAN, PUERTO RICO

ABSTRACT 1.-INTRODUCTION

6 th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL 7-9 September 2011, Athens, Greece

Forecasting summer convective activity over the Po Valley: insights from MAP D-PHASE

Climate Change The Physical Science Basis. It is very likely that hot extremes, heat waves and heavy precipitation

SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS

NOTES AND CORRESPONDENCE The Skillful Time Scale of Climate Models

CLASSIFICATION OF DAILY RAINFALL PATTERNS IN A MEDITERRANEAN AREA WITH EXTREME INTENSITY LEVELS: THE VALENCIA REGION

Precipitation processes in the Middle East

Thermally forced mesoscale atmospheric flow over complex terrain in Southern Italy

LATE REQUEST FOR A SPECIAL PROJECT

Impact of Forcing/Coupling on Atmospheric and Oceanic Forecasts

Application of the Ems-Wrf Model in Dekadal Rainfall Prediction over the Gha Region Franklin J. Opijah 1, Joseph N. Mutemi 1, Laban A.

DETECTION AND FORECASTING - THE CZECH EXPERIENCE

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL

Application of a Three-Dimensional Prognostic Model During the ETEX Real-Time Modeling Exercise: Evaluatin of Results (u)

Coupling of high-resolution meteorological and wave models over southern Italy

Implementation of Modeling the Land-Surface/Atmosphere Interactions to Mesoscale Model COAMPS

Improvement of RAMS precipitation forecast at the short-range through lightning data assimilation

Maximization of Historical Severe Precipitation Events over American, Yuba and Feather River Basins

Diagnosis and numerical simulations of a heavy rain event in the Western Mediterranean Basin

Do aerosols affect lightning?: A global study of a relation between aerosol optical depth and cloud to ground lightning

Intra-seasonal atmospheric variability and extreme precipitation events in the European-Mediterranean region

HEAVY PRECIPITATIONS IN MEDITERRANEAN SPAIN: CLIMATOLOGY AND MESOSCALE NUMERICAL SIMULATIONS. Romualdo Romero Visiting Post-Doctoral, NSSL/CIMMS

7th EMS Annual Meeting and 8th European Conference on Applications of Meteorology 2007

Simulation of a Heavy Rainfall Event on 14 September 2004 over Dhaka, Bangladesh Using MM5 Model

DISTRIBUTION AND DIURNAL VARIATION OF WARM-SEASON SHORT-DURATION HEAVY RAINFALL IN RELATION TO THE MCSS IN CHINA

TOVS and the MM5 analysis over Portugal

Severe storms over the Mediterranean Sea: A satellite and model analysis

Regional Climate Simulations with WRF Model

Consistent changes in twenty-first century daily precipitation from regional climate simulations for Korea using two convection parameterizations

Modeling rainfall diurnal variation of the North American monsoon core using different spatial resolutions

Verification of operational weather forecasts from the POSEIDON system across the Eastern Mediterranean

CONVECTIVE CLOUD MICROPHYSICS IN A HIGH-RESOLUTION NWP MODEL

Available online at ScienceDirect. Procedia Engineering 162 (2016 ) 32 38

Enhanced summer convective rainfall at Alpine high elevations in response to climate warming

Heavier summer downpours with climate change revealed by weather forecast resolution model

Weather forecast in north-western Greece: RISKMED warnings and verification of MM5 model

Trends in Daily Rainfall Intensity Over Israel 1950/1-2003/4

Association of geopotential height patterns with heavy rainfall events in Cyprus

COMPOSITE-BASED VERIFICATION OF PRECIPITATION FORECASTS FROM A MESOSCALE MODEL

Diagnosing the Climatology and Interannual Variability of North American Summer Climate with the Regional Atmospheric Modeling System (RAMS)

Lightning Data Assimilation using an Ensemble Kalman Filter

[1]{CNR- Institute for Atmospheric Sciences and Climate, Bologna, Italy}

Keywords: lightning climatology; lightning flashes; Macedonia Greece.

EVALUATION OF THE WRF METEOROLOGICAL MODEL RESULTS FOR HIGH OZONE EPISODE IN SW POLAND THE ROLE OF MODEL INITIAL CONDITIONS Wrocław, Poland

Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study

Conference Proceedings Paper Sensitivity Analysis of Climate Change Projection to the Grid Size Resolution over Mediterranean

Evaluation of High-Resolution WRF Model Simulations of Surface Wind over the West Coast of India

Heavy Rainfall and Flooding of 23 July 2009 By Richard H. Grumm And Ron Holmes National Weather Service Office State College, PA 16803

Decrease of light rain events in summer associated with a warming environment in China during

A CLASSIFICATION OF THE ATMOSPHERIC CIRCULATION PATTERNS PRODUCING SIGNIFICANT DAILY RAINFALL IN THE SPANISH MEDITERRANEAN AREA

Covered Area Rainfall Event (18-20 October 2017) Excess Rainfall

MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT.

SPECIAL PROJECT FINAL REPORT

WINTER NIGHTTIME TEMPERATURE INVERSIONS AND THEIR RELATIONSHIP WITH THE SYNOPTIC-SCALE ATMOSPHERIC CIRCULATION

Spatial and temporal daily rainfall regime in Catalonia (NE Spain) derived from four precipitation indices, years

Scenarios in the development of Mediterranean cyclones

Transcription:

Adv. Geosci., 26, 7 11, 2010 doi:10.5194/adgeo-26-7-2010 Author(s) 2010. CC Attribution 3.0 License. Advances in Geosciences Sensitivity of precipitation forecasts to convective parameterization in the October 2007 Flash Flood in the Valencia Region (Eastern Spain) I. Gómez 1, F. Pastor 1, and M. Estrela 2 1 Laboratorio de Meteorología-Climatología, Unidad Mixta CEAM-UVEG, Fundación Centro de Estudios Ambientales del Mediterráneo, Programa de Meteorología y Climatología, Paterna (Valencia), Spain 2 Laboratorio de Meteorología-Climatología, Unidad Mixta CEAM-UVEG, Departament de Geografia Física, Universitat de València, Valencia, Spain Received: 21 January 2010 Revised: 5 March 2010 Accepted: 24 March 2010 Published: 30 June 2010 Abstract. The Valencia region, on the Mediterranean coast of the Iberian Peninsula, is an area prone to torrential rains, especially the north of Alicante province and the south of Valencia province. In October 2007, a torrential rain event with accumulated rainfall values exceeding 400 mm in less than 24 h affected the aforementioned areas, producing flash floods that caused extensive economic losses and human casualties. Several simulations of this rain event have been performed with the Regional Atmospheric Modeling System (RAMS) to test the influence of the different convective parameterization scheme implemented in the model on the precipitation forecast. 1 Introduction Torrential rains and flash-floods are common in the Western Mediterranean, occurring mostly from late summer to autumn. These heavy rain events can cause high economic losses and, sometimes, human casualties. Thus, a better understanding and a proper forecasting of these events is an important issue in Mediterranean meteorology. Numerous efforts addressing this problem from different points of view have been made during recent years, ranging from the study of trends in both the number of torrential events and their precipitation (Alpert et al., 2002; Peñarrocha et al., 2002; Millán et al., 2005) to the study of the favourable atmospheric envi- Correspondence to: I. Gómez (igor@ceam.es) ronment for heavy rains in the Mediterranean basin (Millán et al., 1995; Estrela et al., 2002, 2003; Fita et al., 2007). Numerous efforts have also been devoted to different aspects and sensitivities of the numerical modelling of such torrential rain events (Bresson et al., 2009; Federico et al., 2008, Pastor et al., 2001; Lebeaupin et al., 2006, 2009; Miglietta and Regano, 2008). In October 2007 a torrential rain event took place in the Valencia region, mainly affecting coastal areas and nearby mountains in the center-south of the region. More than 400 mm in 24 h were recorded at some stations in this area, with less intense rainfall in the rest of the region. A detailed description of this rain event, from its meteorological scenario and recorded data to its numerical modelling using Regional Atmospheric Modeling System (RAMS) (Pielke et al., 1992; Cotton et al., 2003), is given in Pastor et al. (2010). In the present work, the authors investigate the effects of the different convective parameterization schemes implemented in RAMS model on precipitation forecasts. This is done by means of high-resolution simulations of the October 2007 rain event. 2 Model configuration Six different sensitivity experiments have been carried out with RAMS in its version 6.0. These simulations have been performed using two-way interactive nested grids at increasing horizontal resolution of 40.5, 13.5, 4.5 and 1.5 km, respectively. Vertical discretization consists of a 45-level stretched vertical coordinate with a 30 m spacing near the Published by Copernicus Publications on behalf of the European Geosciences Union.

8 I. Gómez et al.: Sensitivity of precipitation forecasts to convective parameterization Fig. 1. RAMS forecast accumulated precipitation for the whole event: (a) Kuo1, (b) KF1, (c) Kuo2, (d) KF2, (e) Kuo3 and (f) KF3 (mm). surface increasing gradually up to 1000 m near the model top at 16 000 m. The atmospheric boundary and initial conditions are obtained from the National Centre for Environmental Prediction (NCEP) global Final Analyses (FNL), available every 6 h at 1 1 degree resolution. Simulations of 48 h are run for each experiment, starting at 00:00 UTC on 11 October 2007. The convective parameterization schemes supplied by RAMS are activated/deactivated in the three outer domains: Kuo (Molinari, 1985) and Kain-Fritsch (KF) (Kain and Fritsch, 1993; Castro et al., 2002) schemes (Table 1). Convection is explicitly resolved in the inner domain. Fig. 2. Accumulated precipitation (mm) observed for the 48 h period 11 12 October 2007. Data recorded by CEAM Meteorology Department, Spanish Meteorological Agency (AEMET) and Confederación Hidrográfica del Júcar (CHJ). 3 Results The effect of activating or not activating a convective parameterization scheme in the three outer grids is investigated by considering the total accumulated precipitation and its hourly evolution against observations for each of the experiments. The results are analysed only for the inner model domain, which is centred on the rain area. From this analysis, it has Adv. Geosci., 26, 7 11, 2010

I. Gómez et al.: Sensitivity of precipitation forecasts to convective parameterization 9 (a) (b) (c) (d) Fig. 3. (a) Grid 4 topography with stations in the area of maximum rainfall. Time evolution of observed and forecast precipitation (whole simulation time) at (b) Isbert (ISB) (c) Tollos (TOL) and (d) Alcalalí (ALC). Table 1. Sensitivity experiments. Cumulus scheme settings (no cumulus parameterization on Grid 4). Experiment Grid 1 Grid 2 Grid 3 Kuo1 Kuo N/A N/A Kuo2 Kuo Kuo N/A Kuo3 Kuo Kuo Kuo KF1 KF N/A N/A KF2 KF KF N/A KF3 KF KF KF become clear that convective parameterization has a significant impact on the precipitation forecast in RAMS model. 3.1 Accumulated precipitation and spatial location Forecast accumulated precipitation for the six different simulations are shown in Fig. 1. It can be seen that Kuo1 produces two precipitation maxima in the target area, capturing the location and underestimating the amount of rainfall observed (Fig. 2). Kuo2 displays only a narrow area of precipitation. Although in both cases, precipitation values exceed 250 mm, in terms of integrated rainfall over the target area, Kuo1 is remarkable better than Kuo2. The best results for the Kuo scheme experiments are obtained when the Kuo convective parameterization is activated in the three outer grids of the simulation. Then, the spatial distribution of the precipitation correctly fits the actual recorded precipitation in both extension and location. But, again, precipitation values are underpredicted although Kuo3 yields maximum accumulated values above 270 mm, and a broad area over 100 mm. In all three experiments the rain area extends from south-west to north-east and out over the sea. In the case of the Kain-Fritsch convective parameterization scheme experiments, only KF1 gives good results while KF2 and KF3 show very low accumulated precipitation values. In KF1 the high precipitation area is less extensive than the real one, but it is well located. As in the Kuo experiments, the KF1 maximum precipitation value of 180 mm is underestimated with respect to the observed values. The other two experiments, KF2 and KF3, show very low values, below 90 and 50 mm respectively, and the location is moved to the north and inland. Adv. Geosci., 26, 7 11, 2010

10 I. Gómez et al.: Sensitivity of precipitation forecasts to convective parameterization 3.2 Time evolution Three stations representative of the general evolution of the forecast precipitation in the area of maximum rainfall for the whole event are analysed in this section. The comparison of the hourly evolution of the observed and forecast precipitation at these stations is shown in Fig. 3. During the first 20 hours of the simulation, very little or no precipitation was recorded. At most stations, the Kain-Fritsch, Kuo1 and Kuo2 experiments produce almost no precipitation while the Kuo3 experiment shows some precipitation peaks that are not observed. The heavy rainfall started between 20 and 24 h from the beginning of the simulation. Within this 4-h period, Kuo1 produces a rainfall that was not actually observed. The hourly evolution of the precipitation is not well reproduced for the Kuo3 experiment and for the whole simulation period. Moreover, precipitation is strongly under-predicted for the Kuo2 experiment. In contrast, KF1 produces better results than the other KF experiments. In fact, KF1 results are in general similar to those using the Kuo scheme, especially Kuo2 and Kuo3, with the maximum precipitation peaks captured even better for some stations, as for example, Alcalalí (Fig. 3d). 4 Conclusions Several numerical simulations of an extraordinary rain event have been run. In each simulation, the implementation of convective parameterization schemes has been modified in order to investigate the effect on the precipitation forecasts. The two convective parameterization schemes in the RAMS model (Kuo and Kain-Fritsch) have been used on different domains with different spatial resolution. The methodology followed consisted of running different high-resolution simulations with four nested grids, activating or deactivating the parameterization schemes in different combinations of the three outer grids for each simulation. To summarize the results: KF1 seems to better capture the precipitation maximum intensity peaks despite its poor achievement in accumulated totals. Although Kuo3 shows the best performance in both the location and the total accumulation of the precipitation, its hourly distribution performance is worse than KF1 and Kuo2. In general, the Kuo scheme experiments reproduce the precipitation event well, although with a remarkable underestimation (about 50% lower than observation). For most stations, the best results in event duration and peaks are produced by Kuo2 and Kuo3 experiments, while in Kuo1 the precipitation starts too soon and does not reproduce enough precipitation intensities during the rainfall. Acknowledgements. This work has been funded by the Spanish Ministerio de Educación y Ciencia through the projects CGL2008-04550 (Proyecto NIEVA), CSD2007-00067 CONSOLIDER- INGENIO 2010 (Proyecto GRACCIE) and CGL2007-65774/CLI (Proyecto MAPSAT) and by the EU-funded Integrated Project CIRCE (Proj. No. 036961). Fundación CEAM is supported by the Generalitat Valenciana and BANCAIXA. The authors wish to thank NCEP for providing the meteorological analysis for RAMS initialization. FNL data are from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). We also want to thank Jackie Scheiding for the review of the English text. Edited by: A. Mugnai Reviewed by: one anonymous referee References Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., and Manes, A.: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29(11), 31-1/31-4, doi:10.1029/2001gl013554, 2002. Bresson, R., Ricard, D., and Ducrocq, V.: Idealized mesoscale numerical study of Mediterranean heavy precipitating convective systems, Meteorol. Atmos. Phys., 103, 45 55, doi:10.1007/s00703-008-0338-z, 2009. Castro, C. L., Cheng, W. Y. Beltrán, Y., A. B., Marshall Jr., C. H., Pielke, R. A., and Cotton, W. R.. The incorporation of the Kain-Fritsch cumulus parameterization scheme in RAMS with a terrain-adjusted trigger function. Fifth RAMS Users and Related Applications Workshop, Santorini. Greece, 2002. Cotton, W. R., Pielke, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001: Current status and future directions, Meteorol. Atmos. Phys., 82, 5 29, 2003. Estrela, M., Millán, M., Peñarrocha, D., and Pastor, F.: De la Gota Fría al Frente de Retroceso, Centro Francisco Tomás y Valiente, UNED Alzira-Valencia Fundación CEAM, 2002. Estrela, M., Pastor, F., and Millán, M.: Air Mass Change along Trajectories in the Western Mediterranean Basin in the Torrential Rain Events in the Valencia Region, in: Mediterranean Storms, Proceedings of the 4th EGS Plinius Conference 2002, 2003. Federico, S., Avolio, E., Bellecci, C., Lavagnini, A., Colacino, M., and Walko, R. L.: Numerical analysis of an intense rainstorm occurred in southern Italy, Nat. Hazards Earth Syst. Sci., 8, 19 35, doi:10.5194/nhess-8-19-2008, 2008. Fita, L., Romero, R., Luque, A., Emanuel, K., and Ramis, C.: Analysis of the environments of seven Mediterranean tropicallike storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 41 56, doi:10.5194/nhess-7-41-2007, 2007. Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models. Meteoro- Adv. Geosci., 26, 7 11, 2010

I. Gómez et al.: Sensitivity of precipitation forecasts to convective parameterization 11 logical Monographs, No. 46, American Meteorological Society, 165 170, 1993. Lebeaupin, C., Ducrocq, V., and Giordani, H.: Sensitivity of torrential rain events to the sea surface temperature based on highresolution numerical forecasts, J. Geophys. Res.-Atmos., 111, D12110, 12110 12110, 2006. Lebeaupin, C., Ducrocq, V., and Giordani, H.: Two-way onedimensional high-resolution airsea coupled modelling applied to Mediterranean heavy rain events, Q. J. Roy. Meteorol. Soc., 135, 187 204, doi:10.1002/qj.338, 2009. Miglietta, M. M. and Regano, A.: An observational and numerical study of a flash-flood event over south-eastern Italy, Nat. Hazards Earth Syst. Sci., 8, 1417 1430, doi:10.5194/nhess-8-1417-2008, 2008. Millán, M., Estrela, M. J., and Caselles, V.: Torrential Precipitations on the Spanish East Coast: The role of the Mediterranean Sea Surface Temperature, Atmos. Res., 36, 1 16, 1995. Millán, M., Estrela, M. J., and Miró, J.: Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region), J. Climate 18, 2682 2705, 2005. Molinari, J.: A General Form of Kuo s Cumulus Parameterization, Mon. Weather Rev., 113, 1411 1416, 1985. Pastor, F., Estrela, M. J., Peñarrocha, D., and Millán, M. M.: Torrential rains on the Spanish Mediterranean coast: Modeling the effects of the sea surface temperature, J. Appl. Meteorol., 40, 1180 1195, 2001. Pastor, F., Gómez, I., and Estrela, M. J.: Numerical Study of the October 2007 Flash Flood in the Valencia Region (Eastern Spain), Nat. Hazards Earth Syst. Sci., in review, 2010. Peñarrocha, D., Estrela, M. J., and Millán, M.: Classification of daily rainfall patterns in a Mediterranean area with extreme intensity levels: The Valencia region, Int. J. Climatol., 22, 677 695, 2002. Pielke, R., Cotton, R., Walko, R., Tremback, C., Lyons, W., Grasso, L., Nicholls, M., Moran, M., Wesley, D., Lee, T., and Copeland, J.: A Comprehensive Meteorological Modelling System RAMS, Meteorol. Atmos. Phys., 49, 69 91, 1992. Adv. Geosci., 26, 7 11, 2010