The AmSel Process Selective Separation of Americium from PUREX raffinate

Similar documents
Selective complexation of f-elements Partitioning & Transmutation

Actinide stripping by a hydrophilic BTP ligand in aqueous HNO 3 from TODGA containing organic phase.

Separation of An(III) from PUREX raffinate as an innovative SANEX process based on a mixture of TODGA/TBP

SEPARATION OF MINOR ACTINIDES FROM A GENUINE MA/LN FRACTION. Abstract

Complex structure of An and Ln complexes with modified diglycolamides in solution and solid state using different analytical techniques

Neptunium behaviour in PUREX and GANEX processes

One-cycle SANEX process development studies and lab-scale demonstrations

ACTINIDE(III)/LANTHANIDE(III) PARTITIONING USING n-pr-btp AS EXTRACTANT: EXTRACTION KINETICS AND EXTRACTION TEST IN A HOLLOW FIBER MODULE.

Euro-GANEX SYSTEM BEHAVIOR UNDER GAMMA RADIATION

Characterization of lanthanide and actinide complexes in the DIAMEX- SANEX process

Recent Activities on R&D of Innovative Extractants and Adsorbents for Partitioning of Minor Actinides at JAEA

SACSESS. Collaborative Project

ATALANTE Basic physico-chemistry

NMR and TRLFS Studies of Ln(III) and An(III) C5-BPP Complexes

A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate

RECENT PROGRESSES ON PARTITIONING STUDY IN TSINGHUA UNIVERSITY

European Partitioning & transmutation Projects: Strategy and status

Effective separation of Am(III) and Eu(III) from HNO3 Q1 Q2 solutions using CyMe4 BTPhen functionalized silicacoated magnetic nanoparticles

Nitric acid extraction into TODGA

Nuclear Fuel Cycle and WebKOrigen

Deutsch-Französische Kooperation in der Entsorgungsforschung Forschungszentrum Jülich IEK-6

Kinetics of extraction of Eu 3+ ion by TODGA and CyMe 4 -BTBP studied using the RMC technique

Solvent Extraction 9-1

Investigation of Ternary Complexes in Combined Organic Solvent for ALSEP

SEPARATION OF MINOR ACTINIDES FROM GENUINE HLLW USING THE DIAMEX PROCESS

Research and Development to Reduce Radioactive Waste by Accelerator

A COMBINED CYANEX-923 AND HEH[EHP] PROCESS FOR PARTITIONING USED NUCLEAR FUELS: CHARACTERIZING COMPLEX INTERACTIONS AARON THOMAS JOHNSON

TRLFS Study on the Complexation of novel BTP Type Ligands with Cm(III)

STUDY ON PARTITIONING OF LONG LIVED NUCLIDES FROM HLLW IN TSINGHUA UNIVERSITY

New trends in the reprocessing of spent nuclear fuel. Separation of minor actinides by solvent extraction

Comparative Study of ADS-burners with Thermal, Intermediate and Fast Neutron Spectrum for Transmutation of Minor Actinides

The Effects of Nitric Acid on Extraction Properties of TODGA During Fission Product Management

SYNTHESIS AND CHARACTERIZATION OF NOVEL NITROGEN-CONTAINING LIGANDS FOR METAL ION SEPARATIONS CORTNEY LEIGH HOCH

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING

2016 SM H ττ Analysis 26th September 2016

UNEX-T Solvent for Cs, Sr and Actinides Separation from PUREX Raffinate Igor Smirnov, Khlopin Radium Institute

Chapter 13. Solution Dynamics

Supporting Information

Ciclo combustibile, scorie, accelerator driven system

(CE~RN, G!E21ZZMA?ZOEWSPRC)

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW

Computational studies of the relation between bond strength and QTAIM properties in molecular actinide compounds

Current Status and Perspective of R&D -Element Separation-

Partitioning & Transmutation

Studies in liquid-liquid systems. the components of a solution by distributing them between two liquid phases. Its applications

VI. 1. Development of a Simplified MA Separation Process Using Novel R-BTP Adsorbents II

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity

Not Reviewed by WMSymposia, Inc. Purex Process Improvements for PU and NP Control in Total Actinide Recycle Flowsheets

SOME ELEMENTS AND ISOTOPES OF SPECIAL CONCERN IN FUEL CYCLE C SEPARATIONS S Tc: ( 99 Tc) U: ( 3 U, 33 U, 34 U, Np: ( 37 Np) Pu: ( 38 Pu, 39 Pu, Am: (

Cycle Separations. Terry Todd. CRESP Short Course -Introduction to Nuclear Fuel Cycle Chemistry Crystal City, VA

Curium and the Transactinides

Transmutation of Minor Actinides in a Spherical

Actinides (f-block) 1-1

Calculation of dose rate, decay heat and criticality for verifying compliance with transport limits for steel packages

Lanthanide Ternary Complexes Relevant to the Nuclear Fuel Cycle

AN OBJECT-ORIENTED SYSTEMS ENGINEERING MODEL DEVELOPMENT FOR IMPROVING DESIGN FACTORS OF THE SPENT FUEL EXTRACTION PROCESS

Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Nitrogen Oxide Closed System

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT)

Reduction of Radioactive Waste by Accelerators

Modifying U/Pu separation chemistry in Purex processes Robin Taylor. Date: 02/12/09

Characterization of High Level Liquid Waste Generated from Reprocessing of Power Reactor Spent Fuel

Radiochemistry Webinars Nuclear Fuel Cycle Series Advanced Partitioning Technologies in the U.S.

SESSION III PARTITIONING. J.P. Glatz (ITU) J. Laidler (ANL)

Chemical Separations of Pu- 238 from Irradiated Neptunium Targets

UV-LED Module Design with Maximum Power Density

Messung des differentiellen Wirkungsquerschnitts der Z-Boson Produktion im Elektron-Zerfallskanal mit dem CMS-Detektor bei s=8 TeV.

Rapid selective separation of americium/curium from simulated nuclear forensic matrices using triazine ligands

Institute for Nuclear Waste Disposal. Annual Report 2006

A new method to acquire nuclear fission data using heavy ion reactions a way to understand the fission phenomenon

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Physics 3204 UNIT 3 Test Matter Energy Interface

Ultratrace analysis of radionuclides by AMS

Matrix and High Loading Effects on Eichrom Resins. Dan McAlister and Phil Horwitz Eichrom Workshop October 31, 2012


POSTER SESSION PARTITIONING AND ACCELERATOR DRIVEN TRANSMUTATION

Physico-chemistry of actinides at the Nuclear Physics Institute in Orsay

Uranium(VI) Uptake by Synthetic Calcium Silicate Hydrates

Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl 2

RESEARCH ARTICLE. Michael Trumm and Bernd Schimmelpfennig

Plutonium chemistry and other actinides in aqueous solutions Part 2a Homogeneous system

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for

Annual Report Institute for Nuclear Waste Disposal Institut für Nukleare Entsorgung. H. Geckeis, T. Stumpf (eds.) KIT SCIENTIFIC REPORTS 7559

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

MUON AND FFAGS. Y. Mori Kyoto University, RRI

Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models

Neutron Interactions with Matter

PARTITIONING-SEPARATION OF METAL IONS USING HETEROCYCLIC LIGANDS

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Methyl-hydrazine deoxidize Tc(VII) in nitric acid in presence of U(VI) and behavior of technetium in the U/Pu splitting stage of APOR process

Solvent Extraction Research and Development, Japan, Vol. 22, No 1, (2015)

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik

WM2016 Conference, March 6 10, 2016, Phoenix, Arizona, USA. Recovering New Type of Sources by Off-Site Source Recovery Project for WIPP Disposal-16604

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section:

Transcription:

The AmSel Process Selective Separation of Americium from PUREX raffinate Christoph Wagner, Udo Müllich, Andreas Geist, Petra J. Panak KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Introduction Partitioning and Transmutation: Strategy to reduce long term radiotoxicity and heat load of nuclear waste. Aim: separation of Pu and minor actinides (Np, Am and Cm) and transmuting them into short-lived or stable nuclides. Our goal: selective extraction of Am(III) from PUREX raffinate separation of Am(III) from Cm(III), Ln(III) & other fission products (FP) and corrosion products (CP) 2

Why separate americium from curium? Curium: no significant impact on long-term radiotoxicity or heat load of nuclear waste High neutron dose rates and decay heat complicate production of new nuclear fuel disposal in high active waste Separation of Am(III) should be performed early in the process PUREX Am Cm FP Ln Am(III)/(Cm(III) + Ln(III) + FP) sep n Pu U Np Cm + Ln + FP Am EXAm process already successfully tested Bollesteros, M.-J.; Calor, J.-N.; Costenoble, S.; Montuir, M.; Pacary, V.; Sorel, C.; Burdet, F.; Espinoux, D.; Hérès, X.; Eysseric, C., Procedia Chem. 2012, 7, 178 183. 3

Strategy Co-extraction of Am(III), Cm(III) and Ln(III) Selective Am(III) stripping 4

Strategy Co-extraction of Am(III), Cm(III) and Ln(III) TODGA Extracts An(III) + Ln(III) from HNO 3 Rejects most non-ln fission products Rejects corrosion products Successfully used in DIAMEX and i-sanex processes 5

Strategy TODGA prefers Cm(III) over Am(III) SF Cm(III)/Am(III) = 1.6 Requirement for selective Am(III) stripping: Ligand has to prefer Am(III) over Cm(III) Well soluble in water / nitric acid BTBP prefers Am(III) over Cm(III) SF Am(III)/Cm(III) = 1.6 Water soluble BTBP? SF(TODGA) SF(BTBP) = 2.6? 6

Extraction experiments with TODGA and SO 3 -Ph-BTBP 10 4 10 4 10 3 10 3 10 2 10 1 10 2 D(M(III)) 10 0 10-1 10-2 10-3 Am(III) Am(III) Cm(III) Eu(III) SF Cm(III)/Am(III) 10 1 10 0 10-1 SF 10-4 10-1 10 0 [HNO 3 ] ini [mol/l] SF Cm(III)/Am(III) = 2.5 3 SF Eu(III)/Am(III) 10-2 Aq. phase: 20 mm SO 3 -Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kbq/ml each) in HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80 7

Extraction experiments with TODGA and SO 3 - Ph-BTBP D(M(III)) 10000 1000 100 10 1 0,1 D(Am(III)) D(Eu(III)) D(La(III)) D(Ce(III)) D(Pr(III)) D(Nd(III)) D(Sm(III)) D(Eu(III)) D(Gd(III)) D(Am(III)) D(Cm(III)) 0,01 1E-3 1E-4 10-1 10 0 [HNO 3 ] ini [mol/l] Aq. phase: 20 mm SO 3 -Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kbq/ml each) and 6 mg/l of each Ln(III), Y(III) and La(III) in HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80 8

Extraction experiments with TODGA and SO 3 -Ph-BTBP D(Am(III)) 10 3 D(Eu(III)) D(Am(III)) D(Cm(III)) 10 3 D(M(III)) 10 2 10 1 10 0 SF Cm(III)/Am(III) 10 2 10 1 SF Cm(III)/Am(III) 10-1 slope = -1 3 0.2 10 0 10-2 10-1 10 0 10 1 [SO 3 -Ph-BTBP] 10-1 Formation of 1:1 complex? TRLFS studies Aq. phase: SO 3 -Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kbq/ml each) in 0.51 M HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80 9

Complexation of Cm(III) with SO 3 -Ph-BTBP Cm(III) emission spectra with increasing SO 3 -Ph-BTBP concentration in 0.5 M HNO 3 597.1 nm 594.6 nm 620.1 nm c(aq-btbp) in mol/l 0 9.80 E-7 2.41 E-6 3.81 E-6 5.16 E-6 6.91 E-6 9.00 E-6 1.10 E-5 1.29 E-5 1.92 E-5 2.55 E-5 3.37 E-5 4.18 E-5 4.97 E-5 6.52 E-5 8.38 E-5 1.69 E-4 3.21 E-4 5.40 E-4 8.84 E-4 1.20 E-3 1.50 E-3 580 590 600 610 620 630 1,0 0,8 [Cm(solv)] 594.6 nm 597.1 nm 620.1 nm [Cm(solv)] Wavelength (nm) [Cm(SO 3 -Ph-BTBP) 2 ] 5-580 590 600 610 620 630 Wavelength (nm) only one complex species 0,6 0,4 0,2 [Cm(SO 3 -Ph-BTBP) 2 ] 5-0,0 10-6 10-5 10-4 10-3 [SO 3 -Ph-BTBP] [mol/l] 10 30.04.2015

Complexation of Eu(III) with SO 3 -Ph-BTBP Eu(III) 7 F 4 band emission spectra with increasing SO 3 -Ph-BTBP concentration in 0.5 M HNO 3 681.9 nm 686.1 nm 694.8 nm 692.3 nm 695.5 nm 698.2 nm 702.0 nm c(aq-btbp) in mol/l 0 4.98 E-6 1.99 E-5 3.97 E-5 6.93 E-5 9.87 E-5 1.47 E-4 1.95 E-4 2.67 E-4 3.37 E-4 4.29 E-4 5.20 E-4 6.08 E-4 6.96 E-4 7.81 E-4 9.47 E-4 1.11 E-3 1.34 E-3 1.63 E-3 670 680 690 700 710 720 Wavelength (nm) 1,0 [Eu(SO 3 -Ph-BTBP) 2 ] 5- [Eu(SO 3 -Ph-BTBP)] - [Eu(solv)] [Eu(solv)] [Eu(SO 3 -Ph-BTBP) 2 ] 5-0,8 670 680 690 700 710 720 Wavelength (nm) 0,6 0,4 2 complex species formed, primarily 1:2 complex 0,2 0,0 [Eu(SO 3 -Ph-BTBP)] - 10-5 10-4 10-3 10-2 [SO 3 -Ph-BTBP] [mol/l] 11 30.04.2015

Complexation of Cm(III) with SO 3 -Ph-BTBP 3+ +SO 3 -Ph-BTBP 4-3 -SO 3 -Ph-BTBP 4- -SO 3 -Ph-BTBP 4- - +SO 3 -Ph-BTBP 4- logk 01 logk 12 3 2 5- log([cm(so 3 -Ph-BTBP) 2 ]/[Cm 3+ (solv)]) 0-1 -2-3 -4-5 Cm(III) complexation -6,0-5,6-5,2-4,8-4,4-4,0-3,6 log([so 3 -Ph-BTBP] free ) Slope 2.0 0.1 log 02 log([eu(so 3 -Ph-BTBP) n ]/[Eu(SO 3 -Ph-BTBP) n-1 ]) 0-1 -2-3 Eu(III) complexation n = 2 slope 0.9 0.2 n = 1 slope = 1.2 0.2-4,8-4,4-4,0-3,6-3,2 log([so 3 -Ph-BTBP] free ) log 02 = 7.3 ± 0.3 log 02 = 5.4 ± 0.5 log 02 = 1.9 12 30.04.2015

TRLFS with extraction experiments 2 phase extraction experiments containing Cm(III)/Eu(III) in the aq. Phase aq. phase extraction experiment [Cm(SO 3 -Ph-BTBP) 2 ]5- TRLFS spectrum aq. phase extraction experiement [Eu(SO 3 -Ph-BTBP) 2 ] 5- TRLFS spectrum 590 600 610 620 630 Wavelength (nm) 670 680 690 700 710 720 Wavelength (nm) SO 3 -Ph-BTBP forms 1:2 complexes in extraction experiments Aq. phase: 20 mm SO 3 -Ph-BTBP, Cm(III)-248 in 0.5 M HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80 13

Complexation of Cm(III) at ph 3 TRLFS investigation of Cm(III) with SO 3 -Ph-BTP showed the formation of intermediate complexes studies with SO 3 -Ph-BTP were performed in water at ph 3 investigation of Cm(III) complexation with SO 3 -Ph-BTBP at ph 3 C. M. Ruff, U. Müllich, A. Geist and P. J. Panak, Dalton Trans., 2012, 41, 14594-14602. 14

Complexation of Cm(III) at ph 3 Cm(III) emission spectra with increasing SO 3 -Ph-BTBP concentration in 10-3 M HClO 4 590 600 610 620 630 Wavelength (nm) c(so 3 -Ph-BTBP) in mol/l 0 1.96 E-7 3.85 E-7 5.66 E-7 7.41 E-7 9.91 E-7 1.23 E-6 1.45 E-6 1.67 E-6 2.48 E-6 3.67 E-6 4.84 E-6 5.98 E-6 7.09 E-6 8.17 E-6 9.23 E-6 1.03 E-5 1.77 E-5 2.87 E-5 log 02 = 10.4 ± 0.4 (log (0.5 M HNO 3 ) = 7.3 ± 0.3) log([cm(aq-btbp) n ]/[Cm(aq-BTBP) n-1 ]) 1,0 0,8 0,6 0,4 0,2 0,0 0,0-0,2-0,4-0,6-0,8-1,0-1,2-1,4 calcd solvensspecies calcd [Cm(SO 3 -Ph-BTBP)] - calcd [Cm(SO 3 -Ph-BTBP) 2 ] 5- Solvensspezies [Cm(SO 3 -Ph-BTBP)] - [Cm(SO 3 -Ph-BTBP) 2 ] 5-10 -8 10-7 10-6 10-5 10-4 [SO 3 -Ph-BTBP] [mol/l] n = 1 slope 1.0 0.2 n = 2 slope 1.1 0.2-1,6-6,6-6,4-6,2-6,0-5,8-5,6-5,4 log[aq-btbp] free 15 large influence of solvent

Complexation of Cm(III) in different media c(so 3 -Ph-BTBP) in mol/l 0.5 M NaClO 4, ph 3 0.5 M NaNO 0 3, ph 3 1.98 E-7 5.93 E-7 1.08 E-6 1.47 E-6 1.95 E-6 2.33 E-6 2.61 E-6 2.90 E-6 3.27 E-6 3.73 E-6 4.37 E-6 5.27 E-6 7.02 E-6 1.61 E-5 2.94 E-5 4.66 E-5 c(so 3 -Ph-BTBP) in mol/l 0 1.99 E-7 5.96 E-7 1.09 E-6 1.67 E-6 2.25 E-6 2.91 E-6 3.84 E-6 4.30 E-6 4.94 E-6 5.65 E-6 6.54 E-6 7.83 E-6 9.49 E-6 1.84 E-5 590 600 610 620 630 Wavelength (nm) 0.5 M HClO 4 590 600 610 620 630 c(so 3 -Ph-BTBP) in mol/l 0 9.84 E-7 2.42 E-6 3.82 E-6 5.18 E-6 6.93 E-6 9.04 E-6 1.10 E-5 1.30 E-5 1.93 E-5 2.56 E-5 3.38 E-5 4.99 E-5 6.54 E-5 8.42 E-5 1.63 E-4 3.17 E-4 5.39 E-4 8.87 E-4 Wavelength (nm) 16 590 600 610 620 630 Wavelength (nm)

Influence of medium on conditional stability constant M(III) Solvens log 01 logk 12 log 02 Cm 10-3 M HClO 4 5.3 ± 0.3 5.1 ± 0.3 10.4 ± 0.4 Cm 0.5 M HNO 3 - - 7.3 ± 0.3 Cm 0.5 M NaClO 4 - - 9.7 ± 0.3 Cm 0.5 M NaNO 3 - - 9.4 ± 0.3 Cm 0.5 M HClO 4 - - 8.5 ± 0.4 Large effect of medium on speciation and conditional stability constant 17

Influence of ionic strength ionic strength in mol/l 1.0 E-3 1.0 E-2 1.8 E-2 4.3 E-2 8.5 E-2 1.7 E-1 4.2 E-1 7.9 E-1 1.3 2.3 Cm-SO 3 -Ph-BTBP complexation with increasing ionic strength log 01 12 11 logk 12 log 02 590 600 610 620 630 Wavelength (nm) ionic strength in mol/l 1.0 E-3 1.0 E-2 1.8 E-2 4.3 E-2 8.5 E-2 1.7 E-1 4.2 E-1 7.9 E-1 1.3 2.3 cond. stability constant 10 9 8 7 6 5 4 3 2 1 0 1E-3 0,01 0,1 1 ionic strentgh (mol/l) 580 590 600 610 620 630 Wavelength (nm) 18

Conclusion The SO 3 -Ph-BTBP/TODGA system shows good performance for the separation of Am(III)/Cm(III). The system does not require buffers, auxiliary ligands or salting out agents. SO 3 -Ph-BTBP forms 1:2 complexes during extraction. Formation of the same complexes in monophasic and biphasic experiments. The applied medium has a large effect on the speciation and the conditional stability constants of M(III)-SO 3 -Ph-BTBP complexes. 19

Outlook Extraction experiments at elevated temperatures. Investigation of SO 3 -Ph-BTBP loading with realistic Am(III) concentrations. Spectroscopic investigation of Am(III)-SO 3 -Ph-BTBP complexes. 20

Thank you for your attention Acknowledgements to: Prof. Dr. Geckeis The partitioning group Tanja Kisely and Cornelia Walschburger And all colleagues from INE Acknowledgements to the Commission of European Community for financial support 21

Complexation of Cm(III) in the org. phase TRLFS experiments with organic phase of extraction experiment org. phase extraction experiment [Cm(TODGA) 3 ](NO 3 ) 3 org. phase extraction experiment [Eu(TODGA) 3 ](NO 3 ) 3 TRLFS spectrum 580 590 600 610 620 630 Wavelength (nm) 580 590 600 610 620 630 Wavelength (nm) No evidence for the formation of mixed complexes sensitivity too low? Aq. phase: 20 mm SO 3 -Ph-BTP, Cm(III)-248 in 0.5 M HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80 22

Fluorimetric measurements with org. Phase 3,20 2,56 1,92 Idea: Utilizing the energy transfer from ligand to metal to selectively excite the Eu(III) in mixed complexes 580 590 600 610 620 630 Emissionwavelength (nm) 280 260 320 300 360 340 380 400 1,28 0,64 440 420 Excitationwavelength (nm) 23 Aq. phase: 20 mm SO 3 -Ph-BTP, 30 mm Eu(NO 3 ) 3 in 0.5 M HNO 3 Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80

Schematic flowsheet TODGA Extraction/ scrubbing Am(III) + Cm(III) + Ln(III) FP + CP TODGA Am(III) stripping Cm + Ln(III) Cm(III) + Ln(III) stripping HAR FP + CP Feed Am(III) + Cm(III) + Ln(III) + FP + CP Scrub sol n Product Am(III) Am(III) SO 3 -Ph-BTBP HAR Cm(III) + Ln(III) Cm(III) + Ln(III) Cm(III) + Ln(III) strip sol n 24

pk a value of SO 3 -Ph-BTBP 1,0 extinction 100000 80000 60000 40000 20000 ph 226 nm 305 nm 327 nm 319 nm 0 200 250 300 350 400 450 wavelength [nm] pk a = 2.2 ± 0.2 7 3 2,7 2,4 2,1 1,75 1.53 1,28 1,01 0,68 0,36-0,06-0,36 log( (erste protonierte Spezies)/ (unprotonierte Spezies)) 0,8 0,6 0,4 0,2 0,0 10-7 10-6 10-5 10-4 10-3 10-2 10-1 10 0 10 1 0,6 0,4 0,2 0,0-0,2-0,4-0,6-0,8 calcd unprotonated ligand calcd protonated ligand unprotonated ligand protonated ligand a(h + ) slope = 1.00-1,0-3,2-3,0-2,8-2,6-2,4-2,2-2,0-1,8-1,6-1,4 log(a(h+)) 25

TRLFS Setup 26 Christoph Wagner A new system for the separation of americium from PUREX raffinate

Spectroscopic properties of Cm(III) weak ligand field strong ligand field - Identification und quantification of different species - Large effect of changes in first coordination sphere - Little effect of changes in second coordination sphere 27 Christoph Wagner A new system for the separation of americium from PUREX raffinate

Spectroscopic properties of Eu(III) wavelength (nm) Small shifts of the emission bands with changes in inner coordination sphere Characteristic splitting Information on the coordination structure and symmetry 28 Christoph Wagner A new system for the separation of americium from PUREX raffinate