Principles of neutron TOF cross section measurements

Similar documents
Am cross section measurements at GELINA. S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S)

Neutron transmission and capture measurements for 241 Am at GELINA

An introduction to Neutron Resonance Densitometry (Short Summary)

Status of evaluated data for neutron induced reactions on 238 U in the resonance region

Neutron Facilities. X. Ledoux. Ganil, Caen, France

Description and usage of experimental data for evaluation in the resolved resonance region SG - 36

Neutron Cross-Section Measurements from ORELA

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Studying Neutron-Induced Reactions for Basic Science and Societal Applications

Study of a compact NRA system

GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements

Present and Future of Fission at n_tof

Determination of neutron induced nuclear reaction cross sections by time-of-ight measurements

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

1.4 The Tools of the Trade!

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005

THE USE OF GE DETECTORS FOR (N,XN) CROSS-SECTION MEASUREMENTS AT INTENSE AND LOW FREQUENCY PULSED NEUTRON BEAMS. Abstract

High precision neutron inelastic cross section measurements

Neutron capture cross section measurements for 238 Uinthe resonance region at GELINA

Neutron Cross-Section Measurements at ORELA

Nuclear Data Study for Nuclear Transmutation

1.5. The Tools of the Trade!

STATUS AND PERSPECTIVES OF THE N_TOF FACILITY AT CERN. Marco Calviani (CERN) and the n_tof CERN for the n_tof Collaboration

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Needs for Nuclear Reactions on Actinides

Chapter 3: Neutron Activation and Isotope Analysis

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Results of time-of-flight neutron capture cross section measurements for 238 U at a 12 m and 60 m station of GELINA

Measurements of the Neutron Scattering Spectrum from 238 U and Comparison of the Results with a Calculation at the 36.

Neutron and gamma ray measurements. for fusion experiments and spallation sources

Lewis 2.1, 2.2 and 2.3

Total probability for reaction Yield

Nuclear Data Measurements at the RPI LINAC

A new detector for neutron beam monitoring

Neutron induced reactions & nuclear cosmo-chronology. chronology. A Mengoni IAEA Vienna/CERN, Geneva

PROGRESS OF NUCLEAR DATA MEASUREMENT IN CHINA

Application of LaBr 3 detector for neutron resonance densitometry

Neutrons for Science (NFS) at SPIRAL-2

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow,

Characterization and Monte Carlo simulations for a CLYC detector

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

ORNL Nuclear Data Evaluation Accomplishments for FY 2013

Nuclear astrophysics of the s- and r-process

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe

Neutron Capture and Waste Transmutation

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering

Measurements of liquid xenon s response to low-energy particle interactions

Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann

Preparatory experiments for cold-neutron induced fission studies at IKI

Using neutron resonances for non-destructive material analysis: the ANCIENT CHARM project

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Introduction to Nuclear Engineering

Elastic scattering. Elastic scattering

Optimization studies of photo-neutron production in high-z metallic targets using high energy electron beam for ADS and transmutation

Neutron Interactions with Matter

JRC Place on dd Month YYYY Event Name 1

IRMM - Institute for Reference Materials and Measurements

IRMM - Institute for Reference Materials and Measurements

What is measured? M. C. Moxon Jan. 2011

Upcoming features in Serpent photon transport mode

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

Monte Carlo Methods for Uncertainly Analysis Using the Bayesian R-Matrix Code SAMMY

Pulsed Neutron Interrogation Test Assembly - PUNITA

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

RESPONSE FUNCTION STUDY FOR ENERGY TO LIGHT CONVERSION IN ORGANIC LIQUID SCINTILLATORS

Photofission of 238-U Nuclei

Performance test of triple GEM detector at CERN n_tof facility

Neutron-resonance capture as a tool to analyse the internal compositions of objects non-destructively

SPES cyclotron-driven fast neutron irradiation facility aimed at nuclear data needs for next generation nuclear reactors: the FARETRA project at LNL

New Neutron-Induced Cross-Section Measurements for Weak s-process Studies

Reactor & Spallation Neutron Sources

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Neutron capture cross section of 25 Mg and its astrophysical implications

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

Energy Dependence of Neutron Flux

Neutrons For Science (NFS) at SPIRAL-2 (Part II: pulsed neutron beam)

High Energy Neutron Scattering Benchmark of Monte Carlo Computations

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Measurement of (n, xn γ) reaction cross sections in W isotopes

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi

A New Microchannel-Plate Neutron Time-of-Flight Detector

Cross Section Measurements using a 4π BaF 2 Array & High-Energy Neutron Activation Experiments at SPIRAL-2

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators

Nuclear Physics and Astrophysics

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

SPIRAL-2 FOR NEUTRON PRODUCTION

Chapter V: Interactions of neutrons with matter

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES

Transcription:

Principles of neutron TOF cross section measurements J. Heyse, C. Paradela, P. Schillebeeckx EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) H.I. Kim Korea Atomic Energy Research Institute Nuclear Data Center

Neutron induced reactions Neutron + A X

Neutron induced reactions Neutron + A X A+1 X

Neutron induced reactions elastic scattering (n,n) Neutron + A X A+1 X radiative capture (n,) fission (n,f) inelastic scattering (n,n ) other reactions (n,p), (n,d), (n,α)

Neutron induced reaction cross section 1 H 3 10 Cross section is a measure for the interaction probability 0 10 3 10 6 Li 0 10 3 10 10 B Cross sections strongly depend on: 0 Total cross section / b 103 10 59 Co target nucleus incoming neutron energy 0 103 10 131 Xe 0 103 10 08 Pb Dedicated facilities required depending on energy region of interest 0 103 10 35 U 0 10 thermal energy resonance region continuum 38 U 3 10 0 10 39 Pu 3 10 0 10-3 10-10 -1 10 0 10 1 10 10 3 10 Neutron energy / ev 4 10 5 10 6 10

Production and use of nuclear data

(d n / dlne n ) / (cm - s -1 ) (d n / dlne n ) / (cm - s -1 ) Neutron energy spectrum Reactor Neutron induced fission ADS : E p = 600 MeV Spallation reactions 0.3 fast thermal 0.4 ADS-spectrum for E p = 600 MeV 0. 0.3 0. 0.1 0.1 0.0 10-10 0 10 10 4 10 6 10 8 Neutron Energy / ev 0.0 10-10 0 10 10 4 10 6 10 8 Neutron Energy / ev

(n,) / barn Neutron facilities at JRC-IRMM GELINA 10 4 10 99 Tc(n,) cross section 99 Tc + n (n,) Van de Graaff 10 0 10 - White neutron source + Time-of-flight (TOF) 10-4 10-10 0 10 10 4 10 6 Neutron Energy / ev Quasi mono-energetic neutrons through (cp,n) reactions

(n,) / barn Neutron facilities at JRC-IRMM 10 4 10 99 Tc(n,) cross section 99 Tc + n (n,) Van de Graaff 10 0 10-10 -4 10-10 0 10 10 4 10 6 Neutron Energy / ev Quasi mono-energetic neutrons through (cp,n) reactions

Quasi mono-energetic neutron beams Van de Graaff

Charged particle induced neutron reactions quasi mono-energetic neutrons produced via charged particle induced nuclear reactions n e.g. T(d,n) 4 He d a 7 MV VDG - accelerator DC (I p,d < 50 A), Pulsed beam available (1 ns) 6 beam lines fast rabbit systems (T 1/ > 1s) : activation 7 Li(p,n) 7 Be E n : 0-5.3 MeV T(p,n) 3 He E n : 0-6. MeV D(d,n) 3 He E n : 1.8-10.1 MeV T(d,n) 4 He E n : 1.1-4.1 MeV

Charged particle induced neutron reactions

Charged particle induced neutron reactions

(n,) / barn Neutron facilities at JRC-IRMM 99 Tc(n,) cross section 10 4 99 Tc + n (n,) 10 10 0 10-10 -4 10-10 0 10 10 4 10 6 Neutron Energy / ev

(n,) / barn Neutron facilities at JRC-IRMM GELINA 99 Tc(n,) cross section 10 4 99 Tc + n (n,) 10 10 0 10 - White neutron source + Time-of-flight (TOF) 10-4 10-10 0 10 10 4 10 6 Neutron Energy / ev

TOF - Facility GELINA GELINA

GELINA (Geel Electron LINear Accelerator) Pulsed white neutron source (10 mev < E n < 0 MeV) FLIGHT PATHS NORD Pulse frequency 50Hz 800 Hz ELECTRON LINAC Neutron energy : time of flight (TOF) Multi-user facility: 10 flight paths (10 m - 400 m) TARGET HALL FLIGHT PATHS SOUTH Measurement stations with special equipment to perform: Total cross section measurements Partial cross section measurements

GELINA : neutron production NEUTRON FLIGHT PATHS e - accelerated to E e-,max 140 MeV Bremsstrahlung in U-target (rotating & cooled with liquid Hg) (, n), (, f ) in U-target NEUTRON TARGET NEUTRON MODERATOR ELECTRON BEAMLINE EXIT Low energy neutrons by moderation (water moderator in Be-canning)

GELINA : neutron production SHIELDING for MODERATED SPECTRUM SHIELDING for FAST SPECTRUM d n /dlne n / (cm - s -1 ) 10 5 GELINA 30 m 800 Hz 10 4 10 3 Exp. Mod. Fast MCNP Mod. Fast 10 10-10 0 10 10 4 10 6 Neutron Energy / ev

Time-of-flight technique Target- moderator assembly L Detector Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t (T s T 0 ) T s

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t (T s T 0 ) T s v L t

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t (T s T 0 ) T s v L t E mc ( 1) 1 mv

Time-of-flight technique Target- moderator assembly L Detector Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam Sample T 0

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v 0 Sample T 0

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam T 0 v 1 Sample

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v 3 Sample T 0

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) T s

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) + t o T s t 0 : time-offset

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) + t o T s t 0 : time-offset determined by -flash L c (T s T 0 ) t 0

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) + t o T s v L t

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) + t o t = t m ( t t + t d ) T s v L t

Time-of-flight technique Target- moderator assembly L Detector pulsed e - - beam v Sample T 0 t m = (T s T 0 ) + t o t = t m ( t t + t d ) T s v L t E mc ( 1) 1 mv

Yield Theoretical capture yield 0.00 65 Fe 1.15 kev resonance D = R = 0 Area density : 0.0001 at / barn Y tot (1 e n tot )... 0.015 0.010 0.005 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield + Doppler 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 (E) D 1 de' e E' E D E' E (E') 0.005 D 4 Ek m X B T /m n 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev FWHM ln D

Yield + Doppler + Response 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 + R for L = 60 m Y exp R(t,E)Y (E)dE R(t,E)dE 0.005 L = 60 m E E L L t t 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield Experimental observable FWHM D with - Total resonance width R x 10-3 1.5 1.0 FWHM = Exp. Analytical (REFIT) MCNP R = D = = 43 ev 4 ev 15 ev ev - R Experimental resolution 0.5 - D Doppler broadening 0.0 34100 3400 34300 Neutron energy / ev

Yield Experimental observable FWHM D with - Total resonance width R x 10-3 1.5 1.0 FWHM = Exp. Analytical (REFIT) MCNP R = D = = 43 ev 4 ev 15 ev ev - R Experimental resolution 0.5 - D Doppler broadening 0.0 34100 3400 34300 Neutron energy / ev

Time-of-flight technique: experimental resolution L v t t = (T s T 0 ) + t o ( t t +t d ) L v T 0 T s

Time-of-flight technique: experimental resolution v L t v v t t L L t = (T s T 0 ) + t o ( t t +t d ) L v T 0 T s

Time-of-flight technique: experimental resolution v L 1 E mc ( 1) mv v t L t v t L t = (T s T 0 ) + t o ( t t +t d ) E E (1 ) v v v v L v T 0 T s

Time-of-flight technique: experimental resolution v L 1 E mc ( 1) mv v t L t v t L t = (T s T 0 ) + t o ( t t +t d ) E E (1 ) v v v v L v T 0 T s

Time-of-flight technique: experimental resolution v L 1 E mc ( 1) mv v t L t v t L t = (T s T 0 ) + t o ( t t +t d ) E E (1 ) v v v v L L (~1 mm) v t - Initial burst T 0 T 0 T s - Time resolution detector & electronics T s - Neutron transport in target - moderator t t - Neutron transport in detector t d

Time-of-flight technique: experimental resolution t = (T s T 0 ) + t o ( t t +t d ) t Initial burst T 0 Time resolution detector & electronics Neutron transport in target - moderator Neutron transport in detector T s t t t d

Time-of-flight technique: experimental resolution t = (T s T 0 ) + t o ( t t +t d ) t Initial burst T 0 Time resolution detector & electronics Neutron transport in target - moderator Neutron transport in detector T s t t t d

Counts Resolution: initial burst (T 0 ) Single burst : mostly normal (Gaussian) distribution GELINA : T 0 = ns (FWHM) ORELA : T 0 = 4 ns (FWHM) ntof : T 0 = 8 ns (FWHM) Double pulse structure : ISIS J-PARC 000 1500 Exp (30037) Fit ISIS Gaussian response P P 1 = 318 ns FWHM = 60 n 1000 500 0 0.8 0.9 1.0 1.1 1. 1.3 1.4 TOF / s

Time-of-flight technique: experimental resolution t = (T s T 0 ) + t o ( t t +t d ) t Initial burst T 0 Time resolution detector & electronics Neutron transport in target - moderator Neutron transport in detector T s t t t d

Resolution: detector & electronics (T s ) Mostly supposed to be normal (Gaussian) distributed Strongly depends on detector type e.g. C 6 D 6 liquid scintillator < 1 ns Li-glass scintillator < 1ns Frisch-grid ionisation chamber Ge-detector (with RTP) 10 ns 0 ns Mostly response of (T s - T 0 ) lumped in one normal distribution

Time-of-flight technique: experimental resolution t = (T s T 0 ) + t o ( t t +t d ) t Initial burst T 0 Time resolution detector & electronics Neutron transport in target - moderator Neutron transport in detector T s t t t d

R(t t,e) Resolution: Probability distribution of t t 10 0 10-1 GELINA x 10-3 x 10 - x 10-1 0.01-0.0 ev 1 - ev 1 - kev 100-15 kev Response function 10-10 -3 10-3 10-10 -1 10 0 10 1 10 Time, t t / s Flaska et al., NIM A 531, 394 (004)

Equivalent distance : L t = v t t dl P(t t,e n) P'(L t(t t ), E n) dt t t

Probability desinsity Equivalent distance : L t = v t t dl P(t t,e n) P'(L t(t t ), E n) dt t t 0.4 0.3 1-5 ev 100-500 ev 1000-000 ev 6000-8000 ev 10000-0000 ev 60000-80000 ev 0. 0.1 0.4 0.3 0. 0.1 0.0 cm 1-5 ev 0 4 6 8 10 0.0 0 5 10 15 0 5 Distance / cm

Probability desinsity TOF response function R(L t,e n ) 0.4 0.3 1-5 ev 100-500 ev 1000-000 ev 6000-8000 ev 10000-0000 ev 60000-80000 ev 0. 0.1 0.4 0.3 0. 0.1 0.0 cm 1-5 ev 0 4 6 8 10 0.0 0 5 10 15 0 5 Distance / cm

Probability desinsity Probability desinsity TOF response function R(L t,e n ) 0.4 0.3 1-5 ev 100-500 ev 1000-000 ev 6000-8000 ev 10000-0000 ev 60000-80000 ev 10 0 1-5 ev 100-500 ev 1000-000 ev 6000-8000 ev 10000-0000 ev 60000-80000 ev 10-1 0. 0.4 0.3 1-5 ev 10-0.1 0. 0.1 cm 10-3 0.0 0 4 6 8 10 0.0 0 5 10 15 0 5 Distance / cm 10-4 0 5 10 15 0 5 Distance / cm

Eq. Distance / cm Width / cm TOF response function: characteristics 10 8 6 4 Average eq. distance Target equivalent distance Moderated beam Flight path : 0 o Most probable Average 0 10-10 -1 10 0 10 1 10 10 3 10 4 10 5 0 Neutron Energy / ev 10-10 -1 10 0 10 1 10 10 3 10 4 10 5 0 18 16 14 1 10 8 6 4 Resolution function Target equivalent distance Moderated beam Flight path : 0 o FWHM.35 Neutron Energy / ev

Neutron production & transport: analytical Different components (analytical approach) Neutron production Exponential decay Neutron moderation - distribution + Storage term (Ikeda & Carpenter) Cole and Windsor function (applied at JPARC) Neutron emission : direction flight path with respect to moderator

Probability Density Neutron production & transport: analytical 10 0 Monte Carlo REFIT (adjusted to exp.) Analytical approximation 10-1 Below 0.5 ev : + storage 10 - Between 0.5 ev and 1000 ev: dominated by due to moderation 10-3 process and almost independent of E n Above 1000 kev : more complex 10-4 0.0 0.1 0. Delay distance / m Equivalent Distance / m

R(t t,e) P(t t, E) : photonuclear.0 GELINA 40 m E n = 35 kev 1.6 1. 0.8 0.4 0.0.57.58.59 (L / t m ) / (m/s)

R(t t,e) P(t t, E) : photonuclear.0 1.6 GELINA ORNL 40 m 40 m E n = 35 kev 1. 0.8 0.4 0.0.57.58.59 (L / t m ) / (m/s)

R(t t,e) P(t t, E) : photonuclear spallation reactions.0 1.6 GELINA ORNL ntof 40 m 40 m 180 m E n = 35 kev 1. 0.8 0.4 Dimensions : 80 80 60 cm 3 Pure Lead : 4 t H O moderator : 5 cm Al-window : 1.6 mm Al-container : 140 l 0.0.57.58.59 (L / t m ) / (m/s) Resolution : L GELINA : cm ORELA : cm ntof : 1 cm

R(t t,e) R(t t,e) P(t t, E) : photonuclear spallation reactions 1. 1.0 GELINA 3 m E n = 35 kev.0 1.6 GELINA ORNL ntof 40 m 40 m 180 m E n = 35 kev 0.8 0.6 0.4 1. 0.8 0. 0.4 0.0.54.56.58.60 (L / t m ) / (m/s) 0.0.57.58.59 (L / t m ) / (m/s) Resolution GELINA ORELA ntof : L : cm : cm : 1 cm

R(t t,e) R(t t,e) P(t t, E) : photonuclear spallation reactions 1. 1.0 GELINA ISIS 3 m 3 m E n = 35 kev.0 1.6 GELINA ORNL ntof 40 m 40 m 180 m E n = 35 kev 0.8 0.6 0.4 1. 0.8 0. 0.4 0.0.54.56.58.60 (L / t m ) / (m/s) 0.0.57.58.59 (L / t m ) / (m/s) Resolution GELINA ORELA ntof : L : cm : cm : 1 cm

R(t t,e) R(t t,e) P(t t, E) : photonuclear spallation reactions 1. 1.0 GELINA ISIS JPARC 3 m 3 m 3 m E n = 35 kev.0 1.6 GELINA ORNL ntof 40 m 40 m 180 m E n = 35 kev 0.8 0.6 0.4 1. 0.8 0. 0.4 0.0.54.56.58.60 (L / t m ) / (m/s) 0.0.57.58.59 (L / t m ) / (m/s) Resolution GELINA ORELA ntof : L : cm : cm : 1 cm

R(t t,e) R(t t,e) P(t t, E) : photonuclear spallation reactions 1. 1.0 GELINA ISIS JPARC 3 m 3 m 3 m E n = 35 kev.0 1.6 GELINA ORNL ntof 40 m 40 m 180 m E n = 35 kev 0.8 0.6 0.4 1. 0.8 0. 0.4 0.0.54.56.58.60 (L / t m ) / (m/s) Resolution : L ISIS (INES) : 5 cm J-PARC (MLF/ANNRI) : 13 cm Strongly depend on target/moderator configuration (coupled/decoupled) 0.0.57.58.59 (L / t m ) / (m/s) Resolution : L GELINA : cm ORELA : cm ntof : 1 cm

TOF response matrix

Neutron production & transport Photonuclear GELINA Flaska et al. NIMA 531 (004) 394 Ene et al., NIM A 618, 54 (010) ORELA Coceva et al., NIM 1, 459 (1983) RPI Overberg et al., NIM A 438, 53 (1999) Spallation source ntof Gunsing et al., NIM B 61, 95 (007) J-PARC Hasemi et al., NIM A 773 (015) 137

Time-of-flight technique: experimental resolution t = (T s T 0 ) + t o ( t t +t d ) t Initial burst T 0 Time resolution detector & electronics Neutron transport in target - moderator Neutron transport in detector T s t t t d

R(L d,e) Li-glass scintillator : response function 6 Li(n,t)a Scintillator + PMT 1.0 0.8 10 0 10-1 E n =10 ev 0.6 10-0.4 0. 10-3 0.0 0.5 1.0 1.5.0.5 MCNP 0.0 0.0 0.5 1.0 1.5.0.5 Equivalent distance, L d / cm

R(L d,e) Li-glass scintillator : response function 6 Li(n,t)a Scintillator + PMT 1.0 0.8 10 0 10-1 E n =10 ev 0.6 10-0.4 10-3 0.0 0.5 1.0 1.5.0.5 0. 0.0 MCNP Analytical (REFIT) 0.0 0.5 1.0 1.5.0.5 Equivalent distance, L d / cm

R(L d,e) R(L d,e) Li-glass scintillator : response function 1.0 E n =100 ev 1.0 E n =10 ev 10 0 10 0 0.8 10-1 0.8 10-1 0.6 10-0.6 10-0.4 10-3 0.0 0.5 1.0 1.5.0.5 0.4 10-3 0.0 0.5 1.0 1.5.0.5 0. 0.0 MCNP Analytical (REFIT) 0.0 0.5 1.0 1.5.0.5 0. 0.0 MCNP Analytical (REFIT) 0.0 0.5 1.0 1.5.0.5 Equivalent distance, L d / cm Equivalent distance, L d / cm

Time-of-flight technique v v t t L L E E (1 ) v v

Time-of-flight technique v v t t L L 1 L (vt) L E E (1 ) v v

Time-of-flight technique Components: Initial burst T 0 Time resolution detector & electronics T s Neutron transport in target - moderator t t L t (equivalent length = v t t ) Neutron transport in detector t d L d (equivalent length = v t d ) with (T 0, T s, L t, L d ) almost independent of neutron energy (velocity) v v 1 L t t (v T L L 1 L (vt) 0 ) (v Ts ) L t L d L L X E E (1 ) v v neglibible REFIT: numerical and analytical response functions + combination

E / E TOF-resolution : different components v v 1 L (v T 10-1 10-0 ) (v Ts ) L t L d L = 30 m " L " E E (1 ) v v 10-3 L = cm T = 0 10-4 T = 100 ns T = 10 ns T = 1 ns 10-5 10-6 L = cm L = cm L = 0 cm L = cm 10-7 10-10 0 10 10 4 10 6 Neutron Energy energy / kev/ ev

Yield Experimental observable FWHM D with - Total resonance width R x 10-3 1.5 1.0 FWHM = Exp. Analytical (REFIT) MCNP R = D = = 43 ev 4 ev 15 ev ev - R Experimental resolution 0.5 - D Doppler broadening 0.0 34100 3400 34300 Neutron energy / ev

Doppler broadening (T,v) 1 v v V ( v V )P(V) dv v : neutron velocity V : target velocity P(V) : target velocity distribution : nuclear (microscopic) cross section : Doppler broadened (microscopic) cross section T : effective target temperature

Doppler broadened cross sections tot / b.5.0 1.5 1.0 0.5 x 10 4 38 U + n T = 0 K T = 300 K T = 1000 K (T,v) 1 v (E) de' S(E,E') (E' ) (E) D D v V ( v V )P(V) dv 1 m de' e 4 Ek X FWHM B /m E' E D T n ln D E' E (E') 0.0 6.6 6.8 65 66 67 Neutron energy / ev

Yield Theoretical capture yield 0.00 65 Fe 1.15 kev resonance D = R = 0 Area density : 0.0001 at / barn Y tot (1 e n tot )... 0.015 0.010 0.005 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield + Doppler 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 (E) D 1 de' e E' E D E' E (E') 0.005 D 4 Ek m X B T /m n 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev FWHM ln D

Yield + Doppler + Response 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 + R for L = 60 m Y exp R(t,E)Y (E)dE R(t,E)dE 0.005 L = 60 m E E L L t t 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield + Doppler + Response 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 + R for L = 60 m + R for L = 30 m Y exp R(t,E)Y (E)dE R(t,E)dE 0.005 L = 60 m L = 30 m E E L L t t 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield + Doppler + Response 0.00 65 Fe 1.15 kev resonance Area density : 0.0001 at / barn D = R = 0 D (kt = 5 mev) Y tot (1 e n tot (E) de' S(E') (E E' ) )... 0.015 0.010 + R for L = 60 m + R for L = 30 m + R for L = 1.5 m Y exp R(t,E)Y (E)dE R(t,E)dE 0.005 L = 60 m L = 30 m L = 1.5 m E E L L t t 0.000 1140 1145 1150 1155 1160 Neutron Energy / ev

Yield 197 Au(n,) at L = 1 m E E L L t t D 4 Ek m X B T /m n FWHM ln D 0.10 1 m R ~ 00 mev 0.08 0.06 0.04 ~ 10 mev D ~ 940 mev 0.0 0.00 610 60 630 640 650 Neutron Energy (ev)

Yield 197 Au(n,) at L = 1 m and 30 m E E L L t t D 4 Ek m X B T /m n FWHM ln D 0.10 1 m R ~ 00 mev 0.08 30 m R ~ 840 mev 0.06 0.04 ~ 10 mev D ~ 940 mev 0.0 0.00 610 60 630 640 650 Neutron Energy (ev)

Yield Yield 197 Au(n,) at L = 1 m and 30 m E E L L t t D 4 Ek m X B T /m n FWHM ln D 1.0 1 m R ~ 00 mev 0.10 1 m R ~ 00 mev 0.8 30 m R ~ 80 mev 0.08 30 m R ~ 840 mev 0.6 0.4 ~ 10 mev D ~ 300 mev 0.06 0.04 ~ 10 mev D ~ 940 mev 0. 0.0 0.0 58 60 6 Neutron Energy (ev) 0.00 610 60 630 640 650 Neutron Energy (ev)

Yield Experimental observable when < R or D FWHM D Ofter dominated by R or D with - Total resonance width R x 10-3 1.5 1.0 FWHM = Exp. Analytical (REFIT) MCNP R = D = = 43 ev 4 ev 15 ev ev - R Experimental resolution 0.5 - D Doppler broadening effective experimental observable is resonance area 0.0 34100 3400 34300 Neutron energy / ev