Impact of the PXD on the Vertex Reconstruction of π 0 particles

Similar documents
Impact of the Belle II Pixel Detector on CP-Violation Measurements

Sensitivity Study for B 0 π 0 π 0

A.Mordá. INFN - Padova. 7 th July on behalf of the Belle2 Collaboration. CP Violation sensitivity at the Belle II Experiment

Latest time-dependent CP-violation results from BaBar

Cracking the Unitarity Triangle

B-Physics Potential of ATLAS, CMS, LHCb and BTeV

new measurements of sin(2) & cos(2) at BaBar

CP Violation sensitivity at the Belle II Experiment

KEKB collider and Belle detector

Measuring the Unitarity Triangle Angle α with BaBar. Adrian Bevan KEK, 15 th September 2006

B Factories. Alan Watson University of Birmingham, UK

Recent results on CKM/CPV from Belle

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

CKM phase and CP Violation in B Decays

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

CP violation in B 0 π + π decays in the BABAR experiment. Muriel Pivk, CERN. 22 March 2004, Lausanne

Lecture III. Measurement of sin 2 in B K 0 S. Measurement of sin 2 in B + -, B + - Measurement of in B DK. Direct CP Violation

Measurements of CP violating phases in B decays at LHCb

New Physics search in penguin B-decays

Search for new physics in three-body charmless B mesons decays

Electroweak Theory: 5

Measurement of ϕ 2 /α using

Flavour physics in the LHC era

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

The other window on New Physics: CP violation at the B factories

How well do we know the Unitarity Triangle? An experimental review

The weak interaction Part II

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

Measuring α with the B-factories. Adrian Bevan SCIPP 17 th Feb 04

Vub. Longstanding discrepancy between exclusive and inclusive V ub. V ub / V cb constrains the length of the unitarity triangle opposite the angle β.

Hadronic vs e + e - colliders

Heavy Quarks and τ. CVC test Michel parameters. Charm Mixing f D s

Picture Erice. 23 Sept 2002 K. R. Schubert (TU Dresden), QHN Erice

arxiv:hep-ph/ v4 18 Nov 1999

The LHCb Upgrade. Status of LHCb The pre upgrade years. Running scenario A few selected channels.

First Year of BABAR/PEP-II

Measurements of the phase φ s at LHCb

Hiroyuki Sagawa KEK OHO 1-1, Tsukuba, Ibaraki, Japan

CP Violation in B Decays and the CKM Matrix. Emmanuel Olaiya Rutherford Appleton Laboratory Chilton,Didcot,Oxon,OX11 0QX,UK

VI Charmless B Decays

Measurement of the CKM Sides at the B-Factories

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

Flavor Physics beyond the SM. FCNC Processes in the SM

First light from. Gagan Mohanty

Recent CP violation measurements

Belle II perspectives on Unitarity Triangle sides and angles

CP Violation in B Decays at BABAR

Lecture 14 Mixing and CP Violation

G. Eigen U Bergen NFR Meeting Bergen October 19, 2005

Radiative and EW Penguin B-Decays with the Belle Detector. Beauty 2003

B the Tevatron

Weak Decays, CKM, Anders Ryd Cornell University

Recent BaBar results on CP Violation in B decays

CKM Matrix and CP Violation in Standard Model

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

Lecture 2: CPV in B system

CP Violation in B-Meson Decays

Measuring α with B ρρ and ρπ

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Recent V ub results from CLEO

Measuring V ub From Exclusive Semileptonic Decays

On behalf of M. Bona, G. Eigen, R. Itoh and E. Kou

Advances in Open Charm Physics at CLEO-c

Particle Physics II CP violation. Lecture 3. N. Tuning. (also known as Physics of Anti-matter ) Niels Tuning (1)

Standard Model of Particle Physics

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

La Fisica dei Sapori Pesanti

The 3rd Tohoku University GCOE International Symposium

RECENT RESULTS ON HADRONIC B DECAYS FROM BELLE

Alexander Leopold Felicitas Breibeck Christoph Schwanda. for the Belle Collaboration

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

B D ( ) τν τ decays with hadronic and semileptonic tagging at Belle

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

Lecture 11. Weak interactions

Particle Identification of the LHCb detector

12 Best Reasons to Like CP Violation

Precision measurement of

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

Bs studies at a SuperB: physics case and experimental potentialities

Wolfgang Gradl. on behalf of the BABAR collaboration. Tau 2016, Beijing 23 rd September 2016

Motivation Fit Method Inputs Results Conclusion

La Belle Epoque. K.Trabelsi kek.jp Lausanne, 22 Jan, 2009

Precision determinations of V cb and V ub

Studies of CP Violation at BABAR

LHCb: Reoptimized Detector & Tracking Performance

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Searches for Leptonic Decays of the B-meson at BaBar

CP/ Andreas Meyer. Hamburg University. DESY Summer Student Lectures, 1+4 August 2003 (this file including slides not shown in the lecture) Part 1

Recent results on search for new physics at BaBar

CP Violation in B Decays at Belle

Flavour Physics Lecture 1

Measurement of time dependent CP violation in B φks. Mahalaxmi Krishnamurthy University of Tennessee. BaBar Collaboration Beauty 2003

Rare Hadronic B Decays

CP Violation Beyond the Standard Model

THE PEP-II B-FACTORY AND THE BABAR DETECTOR

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Rare Hadronic B decays at BaBar

IX Workshop GFPAE. Prof. Carla Göbel. July 13, Departamento de Física Pontifícia Universidade Católica do Rio de Janeiro

Introduction to Dalitz-plot

Adrian Bevan Department of Physics Liverpool University Liverpool, United Kingdom (from the BABAR Collaboration.)

Transcription:

Impact of the PXD on the Vertex Reconstruction of π particles Fernando Abudinén 14. May, 216 1 Why CP-V. Sensitivity to B π π? 2 -Conversions and π e + e 3 Improvement of B Vertex Reco. 4 Summary and Outlook

Time-dep. CP-Analysis at B-Factories σ(e + e Hadrons) [nb] 25 2 15 1 5 Υ(1S) Υ(2S) Υ(3S) Υ(4S) Υ(4S) above BB prod. threshold B-Factory 51 % are B + B 48 % are B B q B,B = 1, 1 continuum background 9.44 9.46 1. 1.2 1.34 1.37 1.54 1.58 1.62 e + e Center-of-Mass Energy [GeV] e Υ(4S) Boost B tag e + B CP l z z 13µm B B at rest in CMS t = z β c π π K β Belle =.425 β Belle II =.284 e + e 1 P Sig ( t, q) = e t /τ B 4τ B [1 + q (A CP cos( m t) + S CP sin( m t))]

Time-dependent CP-Analysis B B B B A CP For B ππ: tree and penguin diags. contribute! f f B B S CP f CP i: A CP = S CP = sin(2α) i+f: A CP S CP = 1 A CP sin(2α eff ) b d * V ub + W V ud + W u d u d Isospin I =, 2 2 α eff = α α I α CKM-Triangle β R b d V tb t g * V td d u u d I =

3 Active Pi xel Detector Extraction of α angle from B ππ Extr. α through isospin analysis: PhysRevLett.65.3381 A A + = A(B π + π ) 1 2 A + + A = A + 1 2 Ā + + Ā = Ā 1 A +- 2 2 α 1 A +- 2 = A - A + A Pure Tree: A + = Ā Isospin analysis requires also S π + π and S π π. S π π needs z 13µm of B π π where π Challenge!

4 Active Pi xel Detector Extraction of α angle from B ππ p-value 1 - CL 1..8.6.4.2..8.6.4.2 w/out S π π 8 fold ambiguity on α CKM f i t t e r WINTER 12 B ππ (BABAR) B ππ (Belle) B ππ (WA) 2 4 6 8 1 12 14 16 18 1 α (deg) CKM fit 1 - CL Extrapolated to L Belle II = 5ab 1 3 6 9 12 15 18 α ( ) arxiv:hep-ex/7329 with S π π 2 fold ambiguity on α Converted e + e and π e + e req. for z Possible with L Belle II = 5 L Belle and Belle II PXD?.8.6.4 1.2 3 6 9 12 15 18 α ( )

Expected Asymmetry Events / (.22 ps ) 7 6 5 4 3 1 3 2 1 1 5 5 1 t / ps A π π CP =.43 (PDG) S π π CP = 1 A CP sin 2 (α α ).76 5 hep-ex/7339

Vertex of -Conversions in B π π y / cm 6 3 e + e Pipe 2 PXD 1 PXD 2 1 1 2 3 3 2 1 1 2 3 x / cm Υ(4S) B 1 B 2 B 1 generic B 2 π π π (B = 98.82%) π e + e (B = 1.17%) N Belle II = L Belle II B(Υ(4S) B B ) 2 B(B π π ) 5ab 1 1.1nb.49 2 1.91 1 6 1k events. Accept.: θ [17, 15] ECL: θ [12.4, 155.1]

Events with -Conversions % a) If there is an event with -conversions How Many? 4.5 4 3.5 3 2.5 2.77% b) How many Events have at least one -conversion? Vertex in Events % Beam Pipe 2. % 1st. PXD Layer.6 % 2nd. PXD Layer.5 % Total inside PXD 3.1 % 2 1.5 1.5.58%.8%.1% 1 1.5 2 2.5 3 3.5 4 Number of -Conversions c)... and at least one -conversion or one π e + e decay? π e + e 2. % Total π 5.5 % 7 Requirement: All converted in accept. and not converted in ECL

π Kinematics Number of Events/.3 GeV/c 12 1 8 6 4 2 1 6..5 1. 1.5 2. 2.5 3. 3.5 4. p T/ GeV/c 1 5 π Boost θ, e + e θ e+,e Number of Events/ 1 1 5 1 4 1 3 1 2 1 1 Number of Events/ 1 1 4 1 3 1 2 1 1 8 1 2 4 6 8 1 12 14 16 18 θ, / Degrees 1 2 4 6 8 1 12 14 16 18 θ e +, e / Degrees

π e + e Kinematics 1 Number of Events/.3 GeV/c 8 6 4 2..5 1. 1.5 2. 2.5 3. 3.5 4. p/ GeV/c 1 4 1 4 π Boost e + e θ, e + e θ e + e Number of Events/ 1 1 3 1 2 1 1 Number of Events/ 1 1 3 1 2 1 1 9 1 1 2 3 4 5 6 7 8 θ, e + e / Degrees 1 1 2 3 4 5 6 7 8 θ e +, e / Degrees

π e + e CMS Kinematics Number of Events/.3 GeV/c 45 4 35 3 25 2 15 1 5 1 4..1.2.3.4.5 p/ GeV/c 1 3 π Boost e + e θ, e + e θ e + e Number of Events/ 1 Number of Events/ 1 1 2 1 1 1 1 3 5 1 15 θ, e + e / Degrees 1 2 4 6 8 1 12 14 16 18 θ e +, e / Degrees

B Vertex Reconstruction Algorithm: Kinematic Vertex Fit Access: RAVE (Reconstruction in a Abstract, Versatile Environment) TNS.211.2119492 Vertex Reconstruction with spatial constraint centered at the Beam Spot. τ π.9 as =.1 nm π Vertex ˆ= B Vertex. Q on e ± Tracks: At least one PXD hit. x e x e 6µm BS B z e + 6µm BS B e + z e + e π e + e 11

B z-vertex Resolution B π π e + e Events / (.6 cm ) 35 3 25 2 15 1 Entries 112 Mean -4.9 µm Std Dev 181.6 µm Events / (.6 cm ) 3 25 2 15 1 Entries 556 Mean.2 µm Std Dev 88.5 µm 5 5.3.2.1.1.2.3 B_Z - Gen. B_Z / cm No PXD Hit required 12.3.2.1.1.2.3 B_Z - Gen. B_Z / cm At least one track (e + or e ) has one PXD Hit

B z-vertex Resolution B π π e + e Events / (.6 cm ) 5 4 3 Entries 9294 Mean 2.8 µm Std Dev 71.6 µm Events / (.6 cm ) 5 4 3 Entries 916 Mean 3.3 µm Std Dev 69.3 µm 2 2 1 1.3.2.1.1.2.3 B_Z - Gen. B_Z / cm No PXD Hit required 13.3.2.1.1.2.3 B_Z - Gen. B_Z / cm At least one track (e + or e ) has one PXD Hit

t Resolution Events / (.1 ps ) 14 25 2 15 1 5 t = t B CP t B tag B CP π π Entries 1316 Mean.6 ps Std Dev 3.42 ps 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps No PXD Hit required Events / (.1 ps ) 18 16 14 12 1 8 6 4 2 e + e Entries 5861 Mean -.17 ps Std Dev 2.22 ps 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps At least one track (e + or e ) has one PXD Hit

t Resolution t = t B CP t B tag B CP π π e + e Events / (.1 ps ) 4 Entries 9613 Mean -.2 ps 35 Std Dev 1.85 ps 3 25 2 Events / (.1 ps ) 4 Entries 9372 35 Mean -.14 ps Std Dev 1.76 ps 3 25 2 15 15 1 1 5 5 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps 15 No PXD Hit required At least one track (e + or e ) has one PXD Hit

t t t Active Pi xel Detector e +, e e +, e Track Reconstruction / cm σ d.25.2 Gold 2. µm Gold 15. µm Gold 12.5 µm Gold 1. µm Gold 6.6 µm Fit / GeV/c p 3 2.5 2 Gold 2. µm Gold 15. µm Gold 12.5 µm Gold 1. µm Gold 6.6 µm.15 1.5.1 1.5.5 / cm σ z 16.25.2.15.5.5 1 1.5 2 2.5 3.1 MC p / GeV/c t Gold 2. µm Gold 15. µm Gold 12.5 µm Gold 1. µm Gold 6.6 µm.5 1 1.5 2 2.5 3 MC p / GeV/c t MC / p Fit p.5 1 1.5 2 2.5 3 1.1 1.8 1.6 1.4 1.2 1.98.96.94.92 MC p / GeV/c t Gold 2. µm Gold 15. µm Gold 12.5 µm Gold 1. µm Gold 6.6 µm.9.5 1 1.5 2 2.5 3 MC p / GeV/c t

p t -Distribution of -Daughters e + and e from Number of Events /.1 GeV/c 12 1 8 6 4 2 p t =.25 GeV/c.5 1 1.5 2 2.5 3 p / GeV/c T 17 cm

18 Active Pi xel Detector Summary and Outlook Beam Spot constrained kinematic vertex fit reaches higher resolution with PXD Information. Higher t resolution. e ± track fit result to be improved. Check new V Finder tool for e + e.

Time of Propagation counter with 2 mm quartz bars MCP-PMT readout K L /µ Detector (outside) RPC Plates and plastic scintillators with SiPM readout Superconducting Magnet homogeneous field of 1.5 T Electromagnetic Calorimeter 8 CsI Crystals, 16 X PMT/APD readout Pixel Vertex Detector 2 layer pixel detector (8MP) technology Silicon Vertex Detector 4 layer double sided strips 2 5 ns shaping time Central Drift Chamber proportional wire drift chamber 15 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

Pixel Vertex Detector Ac or tiv ep ec t i x e l Det active area gaten clearn 76 8 px 25 px m gaten+1 44.8 m clearn+1 ( 12.5 mm pixel center) SwitcherB (32 channels gate/clear) DCD-B (analog readout) DHP (digital processing) power 75 μm active area thickness 2 mm / 42 μm rigid frame differential data transmission ( 1.6 Gb/s) ground 2 Background Closest to IP Occupancy ( r 2 ) mounting hole flexible interconnect (polyimide/copper) Inst. Lumi.: LBelle II 4 LBelle conductive layers (Al/Al/Cu) hβibelle II < hβibelle smaller z Pixel Detector needed! Technology most suited Depleted Field Effect Transistor

CP-Violation in the SM Why CP-Violation? Matter-Antimatter-Asymm. in the universe larger than in SM. (Sakharov) Why in the B -system? largest CP-V. within the SM. 21 CP-V. in the SM Weak Interaction V CKM d V ud V us V ub d s = V cd V cs V cb s b V td V ts V tb b Wolfenstein-Parameters: λ= sin θ C.2, A, ρ, η 1 1 2 λ2 λ Aλ 3 (ρ iη) V CKM = λ 1 1 2 λ2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη)] Aλ 2 1 L Yuk igw µ Jµ cc Jµ cc CP Jµ cc Jµ cc Unitarity: k V ikv jk = V udv ub + V cdv cb + V tdv tb = O(λ 3 ) O(λ 3 ) O(λ 3 )

CKM-Triangle η.7.6.5.4.3.2 excluded area has CL >.95 sin 2β LHCb sin 2β WA ε K m d & m s m d α ε K CKM f i t t e r La Thuile 215 sol. w/ cos 2β < (excl. at CL >.95) α 22.1 α. -.4 -.2..2.4.6.8 1. ρ = ( 1 λ2 2 ) ρ ρ η = V ub ( 1 λ2 2 ) η β