Supporting Information

Similar documents
Supporting Information

Supporting Informantion

Supporting Information for:

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Electronic Supplementary Information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

bifunctional electrocatalyst for overall water splitting

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Electronic Supplementary Information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Electronic Supplementary Information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Electronic Supplementary Information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supporting Information

Supporting information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Supporting Information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Supporting Information

Electronic Supplementary Information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Electronic Supplementary Information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Supporting Information

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information for

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Supporting Information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Supporting Information

Electronic Supplementary Information

Supporting information for

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Supporting Information

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation

Electronic Supplementary Information

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

Supporting Information

Supporting information

Electronic Supplementary Information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Supporting Information for

Supporting Information

Supporting Information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Supporting Information

Electronic Supplementary Information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Cloth for High-Efficient Electrocatalytic Urea Oxidation

Electronic supplementary information

Electronic Supplementary Information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Electronic Supplementary Information

Supporting Information

Supporting information

Supporting Information

Supporting Information

Corporation. Ti mesh was provided by Hongshan District, Wuhan Instrument Surgical

Supporting Information for

Supporting Information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting

Supporting Information

Supporting Information

Supporting Information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Electronic Supplementary Information

An Advanced Anode Material for Sodium Ion. Batteries

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. Oxalate-Assisted Formation of Uniform Carbon-Confined SnO 2 Nanotubes with Enhanced Lithium Storage

CdS layer as a superior electrocatalyst for hydrogen evolution

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor

η (mv) J (ma cm -2 ) ma cm

Electronic Supplementary Information

Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Transcription:

Supporting Information Nest-like NiCoP for Highly Efficient Overall Water Splitting Cheng Du, a Lan Yang, a Fulin Yang, a Gongzhen Cheng a and Wei Luo a,b* a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China, Tel.: +86-27-68752366 *Corresponding author. E-mail addresses: wluo@whu.edu.cn. b Key laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China Scheme S1. Schematic illustration of the nest-like NiCoP/CC fabrication process. S1

Figure S1. SEM images for NiCo2O4/CC Figure S2. EDS elemental mapping images of nest-like NiCoP/CC. S2

Figure S3. (a) and (b) XRD patterns for metal oxides and metal phosphides. Figure S4. N 2 adsorption-desorption isotherms of (a) nest-like NiCoP/CC, (b) Ni 2 P/CC, and (c) CoP/CC. Figure S5. EDX spectrum of nest-like NiCoP/CC. S3

Figure S6. SEM images for NiCoP/CC with different amounts of urea. (a, d) 5 mmol, (b, e) 10 mmol, (c, f) 20 mmol. Figure S7. SEM images for Ni0.33Co0.67P/CC (a, c) and Ni0.67Co0.33P/CC (b, d). S4

Figure S8. XRD patterns for NiCoP/CC, Ni 33 Co 67 P/CC and Ni 67 Co 33 P/CC. Figure S9. XPS survey scans for the nest-like NiCoP (a); High-resolution XPS spectra of (b) Co(2p), (c) Ni(2p), (d) P(2p), (e) O(1s) and (f) C(1s) peaks for the nest-like NiCoP/CC. S5

Figure S10. The current density per geometric surface area (black), and specific current densities per BET surface area (red) at 0.1 V overpotential for HER (a) and 0.27 V overpotential for OER (b) in 1 M KOH. Figure S11. (a) The HER polarization curves in 0.5 M H 2 SO 4 and (b) the OER polarization curves in 1 M KOH of 3D nest-like NiCoP/CC and NiCoP/CC nanoarray. The mass loading for electrodes was controlled to be ~1.3 mg cm -2. S6

Figure S12. High-resolution XPS spectra of (a) Co(2p), (b) Ni(2p), (c) P(2p) and (d) O(1s) peaks for the nest-like NiCoP/CC after OER test. Figure S13. Nyquist plots of nest-like NiCoP/CC, CoP/CC and Ni 2 P/CC recorded at (a) η = 60 mv in 0.5 M H 2 SO 4 solution, (b) η = 237 mv in 1 M KOH solution. S7

Figure S14. Cyclic voltammetries for (a) nest-like NiCoP/CC, (c) Ni 2 P/CC, and (e) CoP/CC. The capacitive currents at 0.10 V as a function of scan rate for (b) nest-like NiCoP/CC, (d) Ni 2 P/CC, and (f) CoP/CC in 0.5 M H 2 SO 4. S8

Figure S15. Cyclic voltammetries for (a) nest-like NiCoP/CC, (c) Ni 2 P/CC, and (e) CoP/CC. The capacitive currents at 0.96 V as a function of scan rate for (b) nest-like NiCoP/CC, (d) Ni 2 P/CC, and (f) CoP/CC in 1 M KOH. S9

Figure S16. Current-time slopes of chronoamperometric tests for HER in acid (a) and basic (b) solution; the voltage-time slopes of chronopotentiometric test for OER (c) and water (d). Figure S17. Faraday efficiency of H 2 and O 2 production. S10

Table S1 Comparison of the catalytic activity toward the HER in 0.5 M H 2 SO 4 of the nest-like NiCoP/CC with other reported high performance HER catalysts. Materials η10 (mv) Tafel slop Ref. (mv dec -1 ) Ni-P nanoplates/gc 110 73 1 Ni-P/carbon fiber paper 98 58.8 2 NiCoP /Ti 97 50 3 CoP/rGO 105 50 4 u-cop/ti 45 49.3 5 NiCoP/rGO 42 45.2 6 Ni5P4 films/ Ni foam 140 40 7 Ni2P nanorods arrays/ni foam 131 106.1 8 Ni5P4-Ni2P nanosheets array 120 79.1 9 Ni2P/carbon nanospheres 92 46 10 Ni12P5 nanoparticles/ti 107 63 11 CoP/CNT 122 54 12 CoP/CC 67 51 13 CoP/Ti 90 43 14 N2P nanoparticles/ti 120 60 15 Ni2P hollow NPs/Ti 116 46 16 CoP/NCNTs 383 62 17 NiP2 NS/CC 75 51 18 Ni2P/NRGO 102 59 19 NiCoP /CC 44 38.5 This work Table S2 Comparison of representative Co-based and Ni-based water- catalysts in alkaline electrolyte. Mass Materials loading (mg cm -2 ) Ni5P4 films/ NiOOH 3.475 NiCoP/Ni foam 1.6 Ni-P/carbon fiber paper 25.8 Water electrolysis test (in 1.0 M KOH) η10 Tafel Energy slop consumption of (mv) (mv the cells dec -1 ) (kwh (kgh2) -1 ) Mass activity at the overpotential of 0.3 V (ma g -1 ) HER 150 53 - - OER 290 40-3.2 >470 - >45.2 0.6 HER 32 37 - - OER 280 87-10 350-42.0 2.7 HER 117 85.4 - - OER 190 73-2.0 400-43.3 0.6 Fe-Co/carbon 1.2 HER 163 51 - - fiber papers 2 OER 283 34-14.3 Ref. 7 20 21 22 S11

- 450-44.7 2.6 HER >200 - - - OER 350 56-39.5 NiFe@NC 0.2 23 580-48.1 - HER 150 38 - - OER 340 66-1.5 CoP/rGO 0.28 4 470-45.2 - HER 94 42 - - OER 345 47-0.2 Co-P film 2.6 24 >400 - >43.3 0.2 HER 154 51 - - CoP N-doped OER 319 52-23.5 0.283 25 carbon >470 - >45.2 3.0 Ni-Co nanowire 0.3 OER 302 43.6-33 26 Ni Co P-300 0.286 HER 150 60.6 - - 27 C@NiCoP 0.65 HER 76 43 - - 28 HER 88 50 - - OER 300 96-35.1 CoP2/RGO 0.285 29 330-41.5 27.7 u-cop/ti 6.32 HER 60 49.1 - - 5 HER 209 124.1 - - NiCoP/rGO 0.15 NiCoP/Ni foam ~5 Ni0.51Co0.49P film OER 270 65.7-147.8 360-42.3 50.8 HER OER 133 (η 50) 308 (η 50) 540 (η 50) 68.6 - - - - 9.9-47.1 7.0 HER 82 43 - - OER 239 45 - - - 340-41.7 - HER 110 143 - - OER 310 145-3.3 Ni@C-400 NSs ~2.35 340-41.7 1.5 HER 130 58.5 - - OER 270 73.2-4.7 Ni/NiP 10.58 380-42.8 0.28 HER 111 60 - - OER 277 85.6-25.2 CoP NS/C 0.71 310-40.9 11.3 HER 54 51 - - OER 290 65-2.6 CoP-MNA 6.2 390 89 43.1 0.46 S12 6 30 31 32 33 34 35

NiCoP/CC ~2 HER 62 66.5 - - OER 242 64.2-26.5 294-40.4 5.8 This work References (1) Yu, X. Y.; Feng, Y. ; Guan, B.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016, 9, 1246-1250. (2) Wang, X.; Li, W.; Xiong, D.; Petrovykh, D. Y.; Liu, L. Adv. Funct. Mater. 2016, 26, 4067-4077. (3) Wang, C.; Jiang, J.; Ding, T.; Chen, G.; Xu, W.; Yang, Q. Adv. Mater. Interfeces 2016, 3, 1500454. (4) Jiao, L.; Zhou, Y. X.; Jiang, H. L. Chem. Sci. 2016, 7, 1690-1695. (5) Zhou, D.; He, L.; Zhu, W.; Hou, X.; Wang, K.; Du, G.; Zheng, C.; Sun, X.; Asiri, A. M. J. Mater. Chem. A 2016, 4, 10114-10117. (6) Li, J.; Yan, M.; Zhou, X.; Huang, Z. Q.; Xia, Z.; Chang, C. R.; Ma, Y.; Qu, Y. Adv. Funct. Mater. 2016,26, 6785-6796. (7) Ledendecker, M.; Calderón, S. K.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. Angew. Chem., Int. Ed. 2015, 54, 12361-12365. (8) Wang, X.; Kolen'ko, Y. V.; Liu, L. Chem. Commun. 2015, 51, 6738-6741. (9) Wang, X.; Kolen'ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 8188-8192. (10) Pan,Y.; Liu, Y.; Liu, C. J. Power Sources 2015, 285, 169-177. (11) Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Meng, H.; Zhang, C. ACS Nano 2014, 8, 8121-8129. (12) Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem., Int. Ed. 2014, 53, 6710-6714. S13

(13) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587-7590. (14) Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Chem. Mater. 2014, 26, 4326-4329. (15) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. Nanoscale 2014, 6, 11031-11034. (16) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267-9270. (17) Pan, Y.; Lin, Y.; Chen, Y.; Liu, Y.; Liu, C. J. Mater. Chem. A 2016, 4, 4745-4754. (18) Jiang, P.; Liu, Q.; Sun, X. Nanoscale 2014, 6, 13440-13445. (19) Pan, Y.; Yang, N.; Chen, Y.; Lin, Y.; Li, Y.; Liu, Y.; Liu, C. J. Power Sources 2015, 297, 45-52. (20) Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H. N. Nano Lett. 2016, 16, 7718-7725. (21) Wang, X.; Li, W.; Xiong, D.; Petrovykh, D. Y.; Liu, L. Adv. Funct. Mater. 2016, 26, 4067-4077. (22) Liu, W.; Du, K.; Liu, L.; Zhang, J.; Zhu, Z.; Shao, Y.; Li, M. Nano Energy. DOI: 10.1016/j.nanoen.2016.11.047. (23) Zhang, Z.; Qin, Y.; Dou, M.; Ji, J.; Wang, F. Nano Energy, 2016, 30, 426-433. (24) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Angew. Chem., Int. Ed. 2015, 127, 6349-6352. (25) You, B.; Jiang, N.; Sheng, M.; Gul, S.; Yano, J.; Sun, Y. Chem. Mater. 2015, 27, 7636-7642. (26) Bae, S. H.; Kim, J. E.; Randriamahazaka, H.; Moon, S. Y.; Park, J. Y.; Oh, I. K. Adv. Energy Mater. 2017, 7, 1601492. (27) Feng, Y.; Yu, X. Y.; Paik, U. Chem. Commun. 2016, 52, 1633-1636. (28) Bai, Y.; Zhang, H.; Liu, L.; Xu, H.; Wang, Y. Chem. Eur. J. 2016, 22, 1021-1029. (29) Wang, J.; Yang, W.; Liu, J. J. Mater. Chem. A 2016, 4, 4686-4690. S14

(30) Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Sun, X.; Duan, X. Nano Res. 2016, 9, 2251-2259. (31) Yu, J.; Li, Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. Adv. Funct. Mater. 2016, 26, 7644-7651. (32) Xi, W.; Ren, Z.; Kong, L.; Wu, J.; Du, S.; Zhu, J.; Xue, Y.; Meng, H.; Fu, H. J. Mater. Chem. A 2016, 4, 7297-7304. (33) Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Adv. Funct. Mater. 2016, 26, 3314-3323. (34) Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Green Chem. 2016, 18, 2287-2295. (35) Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Adv. Funct. Mater. 2015, 25, 7337-7347. S15