Marine phytoplankton and the changing ocean iron cycle

Similar documents
Iron, silicate, and light co-limitation of three Southern Ocean diatom species

Phytoplankton. Zooplankton. Nutrients

Iron biogeochemistry & the HNLC condition. Philip Boyd Institute for Marine & Antarctic Studies

Effect of CO 2 concentration on C :N:P ratio in marine phytoplankton: A species comparison

Verification and geodynamical assessment of carbon-sequestration from biomass iron-enrichment studies in the Southern Ocean

Productivity in a Changing Southern Ocean. Kevin R. Arrigo Stanford University

for CESM Jessica Luo, Matthew Long, Keith Lindsay, Mike Levy NCAR Climate and Global Dynamics OMWG / BGC Working Group Meeting, Jan 12, 2018

Ocean acidification in NZ offshore waters

Biogeographical controls on the marine nitrogen fixers

the 2 past three decades

Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms

Light intensity / 10 lumen m. [Source: Adapted from J P Kimmins, 1997 Forest Ecology, (2nd edition) page 161]

Carbon and Nutrient Cycles on Continental Shelves - Current Advances and Thoughts for Future Research

SUPPLEMENTARY INFORMATION

Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pco 2

- vertical and horizontal segregation Univ. Washington - case studies (Fe and N) (10/29/01)

Drylands face potential threat under 2 C global warming target

Effects of an iron-light co-limitation on the elemental composition (Si, C, N) of the marine diatoms Thalassiosira oceanica and Ditylum brightwellii

SUPPLEMENTARY INFORMATION

CH385: Ocean Biogeochemistry on a Changing Planet

A revival of Indian summer monsoon rainfall since 2002

Capturing Evolution and Ecology in a Global Ocean Model Tim Lenton, Stuart Daines, James Clark, Hywel Williams

The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment

Iron flux induced by Haida eddies in the Gulf of Alaska

Marine Ecology I: Phytoplankton and Primary production

Phytoplankton niche generation by interspecific stoichiometric variation

Lightning as a major driver of recent large fire years in North American boreal forests

The North Atlantic Bloom: Species composition and vertical fluxes

Carbon Dioxide, Alkalinity and ph

Catastrophic reduction of seaice in the Arctic Ocean - its impact on the marine ecosystems in the polar region-

Untangling the uncertainties about combined effects of temperature and concentration on nutrient uptake rates in the ocean

Does the Iron Cycle Regulate Atmospheric CO2?

Climate Variability Studies in the Ocean

Modeling Marine Microbes: Past, Present and Prospects Mick Follows MIT

Title. Author(s)Sugie, Koji; Kuma, Kenshi. CitationJournal of Plankton Research, 30(11): Issue Date Doc URL. Rights.

Nitrogen Isotope Simulations Confirm the Importance of Atmospheric Iron Deposition for Nitrogen Fixation Across the Pacific Ocean


Modeling Low-Oxygen Regions

Q & A on Trade-off between intensity and frequency of global tropical cyclones

Revisiting the biodiversity ecosystem multifunctionality relationship

SUPPLEMENTARY INFORMATION

particular regional weather extremes

Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi

Estimation of N or C uptake rates by phytoplankton using

Mapping climatic mechanisms likely to favour the emergence of novel communities implications for the emergence of novel communities

Understanding the regional pattern of projected future changes in extreme precipitation

LESSON THREE Time, Temperature, Chlorophyll a Does sea surface temperature affect chlorophyll a concentrations?

Title. CitationGeophysical Research Letters, 33: L Issue Date Doc URL. Type. Note. File Information.

Long term change in the abundances of northern Gulf of Mexico scyphomedusae Chrysaora sp. and Aurelia spp. with links to climate variability

Iron and silicic acid concentrations together regulate Si uptake in the equatorial Pacific Ocean

Observation system for early warning of HAB events

SUPPLEMENTARY INFORMATION

Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean

This Week: Biogeochemical Cycles. Hydrologic Cycle Carbon Cycle

Tracking El Niño using optical indices of phytoplankton dynamics in the equatorial Pacific

1 Published July 11. Acclimation of sea-ice microalgae to freezing temperature* NOTE

Phytoplankton and Primary Production. Marine habitats

Size scaling deviation in phytoplankton photosynthesis and the energy flow through a

Optical Properties of Mineral Particles and Their Effect on Remote-Sensing Reflectance in Coastal Waters

Phytoplankton. The Biological Pump. Nutrient Cycling and the Marine Biological Pump. Phytoplankton and Zooplankton. CSU ATS Sco9 Denning 1

Investigating the contribution of allochthonous subsidies to kelp forests in central California

Potentiometric determination of copper complexation by phytoplankton exudates

Supporting Information Appendix: Supplementary Statistical Methods. Table S1: Sources for trait values

Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring

Resource limitation alters the 3 4 size scaling of metabolic rates in phytoplankton

2. Model Description LXXXXX

Natural Fluorescence Calculations: Terminology and Units

Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1

Marine Life. and Ecology. 2. From phytoplanktons to invertebates

Influence of pco 2, temperature, and feeding on the extracellular ph of Calanus glacialis during diapause

The role of dust in the cycling of iron in the ocean

PRINCIPLE OF OCEANOGRAPHY PBBT101 UNIT-1 INTRODUCTION OF OCEANIC ENVIRONMENT. PART-A (2 Marks)

The functional biology of krill (Thysanoessa raschii)

Biogeochemical modelling and data assimilation: status in Australia

What can we learn from the paleo record about past changes in ocean productivity and controls of atmospheric CO 2?

Name ECOLOGY TEST #1 Fall, 2014

Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling

Long-term changes in microalgae communities on the Russian East coast with emphasis on toxic and bloom forming species

Interactive comment on Ocean Biogeochemistry in the warm climate of the Late Paleocene by M. Heinze and T. Ilyina

Responses to future climate change: biogeochemistry

Carolina, and. a Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South

Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

DIFFERENTIAL GROWTH RATES OF MICRO-ALGAE IN VARIOUS CULTURE MEDIA

An improved method for determining relative "N abundance in ammonium regeneration studies by direct diffusion

Lecture 12 Oxygen deficiency in the geological record

SUPPLEMENTARY INFORMATION

Question: What is the primary reason for the great abundance of fish along the Peruvian coast?

Digestion in sea urchin larvae impaired under ocean acidification

Exploring*mutualistic*interactions*between*microalgae*and*bacteria*in*the*omics*age*

Optical Properties of Mineral Particles and Their Effect on Remote-Sensing Reflectance in Coastal Waters

Mark L. Wells ), Kenneth W. Bruland

Dissolution of olivine (potential, side effects) in simulated CO 2 removal experiments

Global fields of sea-surface DMS Review & Data. L. Bopp, T. Anderson, S. Belviso and R. Simó

The Role of Chemical Speciation in Processes Governing the Environmental Fate and Effects of Trace Metals in Estuarine and Coastal Environments

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Nitrogen isotopic fractionation during a simulated diatom spring bloom: importance of N-starvation in controlling fractionation

TRANSCRIPTIONAL RESPONSE OF NITROGEN UPTAKE AND ASSIMILATION IN MARINE DIATOMS; THALASSIOSIRA PSEUDONANA AND THALASSIOSIRA WEISSFLOGII

Future population exposure to US heat extremes

Announcements. Third problem site due November 30 Review calculations

Life on Earth

Transcription:

In the format provided by the authors and unedited. Marine phytoplankton and the changing ocean iron cycle D. A. Hutchins 1 * and P. W. Boyd 2 SUPPLEMENTARY INFORMATION DOI: 1.138/NCLIMATE3147 NATURE CLIMATE CHANGE www.nature.com/natureclimatechange 1 216 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Marine phytoplankton and the changing ocean iron cycle Supplementary Information I. Supplementary Figures A) Global)Fe)cycle) B) Global)Ocean)Change)) Physiology) Reduced)Fe)uptake) Floris<cs) Altered)Fe)quotas) Fate)of)bio<c)Fe) Physiology) Luxury)Fe)uptake) "))Fe)demand))+) 4))CO 2) ))75) ) )))))))))Today)))Temp)))))+3C).2)).1)))))).1))).2)).3))).4)).5)) "))))Fe)supply)))))))+) "))Fe)demand))+) PAR))higher) )))))))))Today))))Temp))))+3C) S"Figure)1.)Sequence)of)changes)to)the)iron)uptake)of)resident)phytoplankton)in)a)future)ocean)in)response)to:)cumula<ve)effects)of))modifying)the)iron)cycle;)Feedbacks)to)iron)) supply)are)in)red.)b))upper)plot,)influence)of)warming)(black)symbols),)acidifica<on)(blue)symbols),)and)both)(red)symbol))on)colonial)n)fixers;)lower)plot)impact)of)warming)(black)) symbols),)shallower)mixed)layer)depth)(green)symbols),)and)both)(red)symbols))on)polar)diatoms.)panel)a)is)semi"quan<ta<ve)and)based)on)studies)from)(wells,)1999;)) Hutchins)et)al.,)22;)Boyd)et)al.)27;)Wilhelm)et)al.,)213),)whereas)B)is)largely)conceptual)and)based)on)preliminary)data)in)S"Table)1)and)S"Figure)2.)

Crocosphaera:+N A. N 2 fixation 2 +fixaon+rates+as+a+funcon+of+ B. Cellular Fe quota 5 pco 2+ and + Fe # N 2 fixation (nmol cell -1 hour -1 ) N 2 fixation (nmol cell -1 hour -1 ) 3e-8 2e-8 1e-8 3e-8 2e-8 1e-8 Fe-replete Fe-limited 19 38 75 pco2 (ppm) Fe:P ratio (mmol:mol) Fe:P ratio (mmol:mol) 4 3 2 1 5 4 3 2 1 Fe replete Fe limited 19 ppm 38 ppm 75 ppm pco2 S%Figure#2.#A)#N 2 &fixa)on&rates&and&b)&cellular&fe&quotas&(as&fe:p&ra)os,&mmol:mol)&as&a&func)on&of&growth&co 2 && concentra)ons&in&feareplete&(top&panels)&and&fealimited&(bodom&panels)&cultures&of&the&unicellular&n 2 &fixing&& cyanobacterium&crocosphaera.&n 2 &fixa)on&rates&and&fe&quotas&are&linearly&related&to&co 2 &levels&in&feareplete&cultures,&& but&both&rates&and&quotas&are&low&and&independent&of&co 2 &in&fealimited&cultures.&&values&are&means&and&error&bars& are&standard&devia)ons&of&triplicate&cultures&(from&fu&et&al.&28).& &

Fe:P ratio (mmol:mol) 18 16 14 12 1 8 6 4 2 37 ppm 75 ppm pco2 S"Figure)3.))Cellular'Fe'quotas'(as'Fe:P'raos,'mmol:mol)'increase'~4%'when'cultures'of'the'N 2 @fixing'cyanobacterium'' Trichodesmium'are'grown'using'trace'metal'clean'methodology'at'projected'year'21'CO 2 'levels'(75'ppm),'relave'to'' cells'grown'at'near@present'day'co 2 'concentraons'(37'ppm).''cellular'fe'and'p'was'measured'using'inducvely'coupled'' Plasma'Mass'Spectrometry'(ICP@MS),'as'described'in'Fu'et'al.'(28).'Values'are'means'and'error'bars'are'standard'deviaons'' of'triplicate'cultures'(hutchins'unpublished'data).'

II. Supplementary Table Study Organism Status Change Assumption IUE increase Sunda and Thalassiosira Fe- limited 1 o C 15.4 to 18.8 Huntsman pseudonana (85 PFD) warming 211 (22%) Clarke 1983, Southern Ocean review Strzepek et al. 212 Polar organisms Thalassiosira weissflogii Fe- limited, Irradiance = 7 μe 4 o C warming Irradiance increase to 11 μe Temperate Q1 equates to Q4 for polar waters Net estimated increase in IUE 3% Warming estimate: 22% increase Mixed layer shoaling estimate: 8% increase S- Table 1. Details of the calculation of an estimated future Iron Use Efficiency (IUE, kmols C fixed/mol cellular Fe/day) increase with 4 o C warming and 57% increase in irradiance (due to mixed layer shoaling) for polar diatoms, based on extrapolation of a lab culture study on temperate diatoms (Sunda and Huntsman 211) and one on polar and temperate diatoms (Strzepek et al., 212). The following assumptions were made: 1) Temperate diatoms will respond to light and warming in the same way as Southern Ocean diatoms; 2) T. pseudonana can be compared to T. weissflogii; 3) Q1 in temperate diatoms is equivalent to Q4 in polar species (Clarke 1983), 4) Effects of warming and irradiance on IUE are additive.

III. Supplementary Notes References for Supplementary Figures and Table Wells M.L., Manipulating iron availability in nearshore waters. Limnol Oceanogr., 44, 12 774 18 775, (1999) Hutchins, D.A., C.E. Hare, R.S. Weaver, Y. Zhang, G.F. Firme, et al., Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnol. Oceanogr., 47, 997-111, (22). Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., et al., Mesoscale iron enrichment experiments 1993-25: Synthesis and future directions. Science, 315, 612-617. doi: 1.1126/science.1131669, (27). Wilhelm, S. W., King, A. L., Twining, B. S., LeCleir, G. R., DeBruyn, et al. Elemental quotas and physiology of a southwestern Pacific Ocean plankton community as a function of iron availability. Aq. Micr. Ecol., 68, 185-194, doi: 1.3354/ame1611. (213). Fu, F.- X., Mulholland, M.R., Garcia, N., Beck, A., Bernhardt, P.W. et al., Interactions between changing pco 2, N 2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 53, 2472-2484, (28). Sunda, W.G. and Huntsman, S.A. Interactive effects of light and temperature on iron limitation in a marine diatom: Implications for marine productivity and carbon cycling. Limnol. Oceanogr., 56, 1475 1488, (211). Clarke, A. Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr. Mar Biol. Annu. Rev., 21, 341 453, (1983). Strzepek R., Maldonado M., Hunter K., Frew R., Boyd P.W., Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol Oceanogr., 56, 1983 22. doi: 1.4319/lo.211.56.6.1983, (212).