QCD phase structure from the functional RG

Similar documents
Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD

QCD from quark, gluon, and meson correlators

Chiral symmetry breaking in continuum QCD

Functional renormalization group approach of QCD and its application in RHIC physics

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

On the role of fluctuations in (2+1)-flavor QCD

QCD Phases with Functional Methods

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

t Hooft Determinant at Finite Temperature with Fluctuations

Can we locate the QCD critical endpoint with a Taylor expansion?

Baryon number fluctuations within the functional renormalization group approach

With the FRG towards the QCD Phase diagram

Spectral Functions from the Functional RG

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

(De-)Confinement from QCD Green s functions

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Locating QCD s critical end point

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

The phase diagram of two flavour QCD

Bethe Salpeter studies of mesons beyond rainbow-ladder

On bound states in gauge theories with different matter content

Sarma phase in relativistic and non-relativistic systems

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Functional RG methods in QCD

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

Renormalization Group Study of the Chiral Phase Transition

QCD-like theories at finite density

Jochen Wambach. to Gerry Brown

Recent results for propagators and vertices of Yang-Mills theory

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

Non-perturbative Study of Chiral Phase Transition

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

On the Landau gauge three-gluon vertex

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz

Mesonic and nucleon fluctuation effects at finite baryon density

Tetraquarks and Goldstone boson physics

Spectral Properties of Quarks in the Quark-Gluon Plasma

Phase transitions in strong QED3

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Quark tensor and axial charges within the Schwinger-Dyson formalism

Deconfinement and Polyakov loop in 2+1 flavor QCD

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

Confinement from Correlation Functions

Introduction to Strong Interactions and the Hadronic Spectrum

Mesonic and nucleon fluctuation effects in nuclear medium

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Analytical study of Yang-Mills theory from first principles by a massive expansion

Thermodynamics of the Polyakov-Quark-Meson Model

Role of fluctuations in detecting the QCD phase transition

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

Confinement in Polyakov gauge

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

Phases and facets of 2-colour matter

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

QCD at finite density with Dyson-Schwinger equations

The Phases of QCD. Thomas Schaefer. North Carolina State University

Phase diagram of QCD: the critical point

Medium Modifications of Hadrons and Electromagnetic Probe

Critical Region of the QCD Phase Transition

Pions in the quark matter phase diagram

QCD thermodynamics OUTLINE:

HLbl from a Dyson Schwinger Approach

Infra-Red. Infra-red dog

(Inverse) magnetic catalysis and phase transition in QCD

arxiv: v1 [hep-ph] 2 Nov 2009

Dual quark condensate and dressed Polyakov loops

The Big Picture. Thomas Schaefer. North Carolina State University

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

QCD at finite density with Dyson-Schwinger equations

Lattice QCD based equation of state at finite baryon density

arxiv: v1 [hep-lat] 26 Dec 2009

Gluon Propagator and Gluonic Screening around Deconfinement

The chiral anomaly and the eta-prime in vacuum and at low temperatures

QCD in an external magnetic field

Probing the QCD phase diagram with higher moments

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Quark condensates and the deconfinement transition

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Inverse square potential, scale anomaly, and complex extension

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

Bulk Thermodynamics: What do we (want to) know?

Hadron spectra and QCD phase diagram from DSEs

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

The interplay of flavour- and Polyakov-loop- degrees of freedom

QCD Vacuum, Centre Vortices and Flux Tubes

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Hadronic light-by-light from Dyson-Schwinger equations

Baryonic Spectral Functions at Finite Temperature

The Phases of QCD. Thomas Schaefer. North Carolina State University

Probing QCD Phase Diagram in Heavy Ion Collisions

arxiv: v1 [hep-lat] 15 Nov 2016

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Transcription:

QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23

fqcd collaboration - QCD (phase diagram) with frg: J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink... Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 2 / 23

fqcd collaboration - QCD (phase diagram) with frg: J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, MM, J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink... Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> crossover FAIR/NICA <ψψ> = / vacuum hadronic fluid n B= n B> AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / CFL neutron star cores large part of this effort: vacuum YM-theory and QCD - why? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 2 / 23

QCD with the frg Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] [Wetterich 93] k Γ k = 1 2 + 1 2 effective action Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 3 / 23

QCD with the frg Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] [Wetterich 93] k Γ k = 1 2 + 1 2 effective action Γ[Φ] = lim k Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) [Φ]) 1 on rhs gauge-fixed approach (Landau gauge): ghosts appear mesons due to bosonization of four-fermi interaction M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 3 / 23

Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 4 / 23

Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 4 / 23

Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] external information: Polyakov-loop potential U(Φ, Φ ) from lattice input initial h ΛQM, U ΛQM, m σ,λqm and m π,λqm from vacuum observables M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 4 / 23

Low-energy effective description (PQM model) low enough momentum-scales k Λ QM : glue sector decouples remainder: quarks and mesons Γ k ΛQM [Φ] [ Z q,k q / q + h k (σ + iγ 5 τ π) q ] + [ Z σ,k σ ( 2 + mσ) 2 σ + Z π,k π ( 2 + mπ 2 ) π + Uk (σ, π) + U(Φ, Φ ) ] additional approximations necessary: LPA: Zq,k = Z σ,k = Z π,k 1 cf. talk B.-J. Schaefer LPA : h k h [Helmboldt, Pawlowski, Strodthoff, 214] LPA +Y: all shown(!) operators run [Rennecke, Pawlowski, 214] external information: Polyakov-loop potential U(Φ, Φ ) from lattice input initial h ΛQM, U ΛQM, m σ,λqm and m π,λqm from vacuum observables usual applications Λ QM.7 1 GeV - justified? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 4 / 23

Equation of state (EOS) pressure t = T Tc T c interactions measure correct dofs below t.2 P/T 4 3.5 3 2.5 2 1.5 1.5 Wuppertal-Budapest, 21 PQM FRG PQM emf PQM MF (ε - 3P)/T 4 8 7 6 5 4 3 2 1 Wuppertal-Budapest, 21 HotQCD N t =8, 212 HotQCD N t =12, 212 PQM FRG PQM emf PQM MF -.6 -.4 -.2.2.4.6 t -.6 -.4 -.2.2.4.6 t [Herbst, MM, Pawlowski, Schaefer, Stiele, 213] [Herbst, MM, Pawlowski, Schaefer, Stiele, 216] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 5 / 23

Kurtosis [Fu, Pawlowski, 215,216], [Fu, Pawlowski, Schaefer, 216] χ B n = n p (µ B /T ) n T 4 µ( s) from freeze-out curve fluctuations in finite volume: cf. talk B.-J. Schaefer M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 6 / 23

η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 7 / 23

η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P)+.5.4.3.2.1 1 2 3 4 5 6 7 8 9 1 k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 7 / 23

η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P)+.5.4.3.2.1 1 2 3 4 5 6 7 8 9 1 k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) 1 screening masses 8 m/[mev] 6 4 2 m η m ηpqm m σpqm m πpqm 12 14 16 18 2 22 24 T/[MeV] [Heller, MM, 215] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 7 / 23

η -meson (screening) mass at chiral crossover drop in η mass at chiral crossover? [Csörgo et al., 21] t Hooft determinant [MeV] -2.6 λ (S-P)+.5.4.3.2.1 1 2 3 4 5 6 7 8 9 1 k/[mev] RG-scale dependence from QCD [MM, Pawlowski, Strodthoff, 214] temperature dependence k(t ): λ (S P)+,QCD(k) λ (S P)+,PQM(T ) 1 8 screening masses N f = 2 + 1: [MM, Schaefer, 213] m/[mev] 6 4 2 m η m ηpqm m σpqm m πpqm 12 14 16 18 2 22 24 T/[MeV] [Heller, MM, 215] masses [MeV] 12 π σ a η η 1 8 6 4 2 5 1 15 2 25 3 T [MeV] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 7 / 23

Spectral functions [Pawlowski, Strodthoff, 215] (O(N)-model, T = ).1 pion ε=.1 sigma ε=.1 spectral function ρ[1/mev 2 ].1 1e-6 1e-8 1e-1 ρ(ω, p) = 5 1 15 2 25 3 ImΓ (2) R (ω, p), ImΓ (2) R (ω, p)2 +ReΓ (2) Γ(2) R (ω, p)2 R ext. frequency ω[mev] (ω, p) = lim ɛ Γ(2) E direct calculation, no numerical analytical continuation O(4)-symmetric regularization ( i (ω + iɛ), p) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 8 / 23

Phase structure with functional methods works well at µ = : agreement with lattice (ε - 3P)/T 4 8 7 6 5 4 3 Wuppertal-Budapest, 21 HotQCD N t =8, 212 HotQCD N t =12, 212 PQM FRG PQM emf PQM MF 2 1 -.6 -.4 -.2.2.4.6 t [Herbst, MM, Pawlowski, Schaefer, Stiele, 13] 1.8 Lattice set A set B l,s (T) / l,s (T=).6.4.2 5 1 15 2 25 T [MeV] [Luecker, Fischer, Welzbacher, 214] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 9 / 23

Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) T [MeV] 12 1 8 6 FRG emf MF 4 2 5 1 15 2 25 3 35 µ [MeV] [MM, Schaefer, 213] 2 15 µ B /T=2 µ B /T=3 T [MeV] 1 5 Lattice: curvature range κ=.66-.18 DSE: chiral crossover DSE: critical end point DSE: deconfinement crossover 5 1 15 2 µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 9 / 23

Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with frg: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex T [MeV] 2 15 12 1 8 6 4 2 5 1 15 2 25 3 35 µ [MeV] FRG emf MF [MM, Schaefer, 213] µ B /T=2 µ B /T=3 T [MeV] 1 5 Lattice: curvature range κ=.66-.18 DSE: chiral crossover DSE: critical end point DSE: deconfinement crossover 5 1 15 2 µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 9 / 23

Phase structure with functional methods works well at µ = : agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with frg: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex possible explanations for disagreement: µ : relative importance of diagrams changes summed contributions vs. individual contributions µ-dependent initial values necessary in PQM/PNJL approaches T [MeV] T [MeV] 2 15 1 5 12 1 8 6 4 2 5 1 15 2 25 3 35 µ [MeV] FRG emf MF [MM, Schaefer, 213] Lattice: curvature range κ=.66-.18 DSE: chiral crossover DSE: critical end point µ B /T=2 DSE: deconfinement crossover µ B /T=3 5 1 15 2 µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 9 / 23

QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23

QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23

QCD with the frg... again use only perturbative QCD input α S (Λ = O(1) GeV) m q (Λ = O(1) GeV) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) [Φ]) 1 on rhs gauge-fixed approach (Landau gauge): ghosts appear M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23

Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 11 / 23

Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = 2 + 1 2 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 11 / 23

Vertex expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = 2 + 1 2 want apparent convergence of Γ[Φ] = lim k Γ k [Φ] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 11 / 23

Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 215] quenched QCD: allows separate investigation: M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 12 / 23

Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 215] quenched QCD: allows separate investigation: quenched matter part [MM, Strodthoff, Pawlowski, 214] outlook: unquenching [Cyrol, MM, Strodthoff, Pawlowski, in preparation] pure YM-theory (cf. talk Anton Cyrol) [Cyrol, Fister, MM, Pawlowski, Strodthoff, 216] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 12 / 23

Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 13 / 23

Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): resonance singularity without momentum dependency t λ = a λ 2 + b λ α + c α 2, b >, a, c t = 2 +... t λ g = g =, T > g = g cr λ g > g cr [Braun, 211] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 13 / 23

(transverse) running couplings [Cyrol, MM, Pawlowski, Strodthoff, in preparation] running couplings α X 2 1.5 1.5 qaq cac,prop cr.1 1 1 p [GeV] agreement in perturbative regime required by gauge symmetry non-degenerate in nonperturbative regime: reflects gluon mass gap α qaq > α cr : necessary for chiral symmetry breaking area above α cr very sensitive to errors M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 14 / 23

4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 22] change of variables: particular 4-Fermi channels meson exchange efficient inclusion of momentum dependence no singularities M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 15 / 23

4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 22] change of variables: particular 4-Fermi channels meson exchange efficient inclusion of momentum dependence no singularities identification of Λ QM/NJL 3 MeV k Γ k = 1 2 + 1 2 (bosonized) 4-fermi-interaction 25 2 15 1 5 h 2 π /(2 m2 π ) λ π.1 1 1 RG-scale k [GeV] Yukawa interaction h π 3 25 2 15 1 5 1 1 RG-scale k [GeV] [MM, Strodthoff, Pawlowski, 214] [Braun, Fister, Haas, Pawlowski, Rennecke, 214] [MM, Strodthoff, Pawlowski, 214] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 15 / 23

Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] 1 t = + + 1 2 + + t = 1 2 + 2 + perm. t = 2 + perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 16 / 23

Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], t 1 = + [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] t 1 = 2 + 1 2 1 t = + + 1 2 + + t = + perm. t = 1 2 t = + 2 + perm. + 2 + perm. t = + 2 + perm. t = 2 + perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 16 / 23

Flow equations (FormTracer: cf. talk A. K. Cyrol, [Cyrol, MM, Strodthoff, 216]) [MM, Strodthoff, Pawlowski, 214], t 1 = + [Cyrol, Fister, MM, Strodthoff, Pawlowski, 216] t 1 = 2 + 1 2 1 t = + + 1 2 + + t = + perm. t = 1 2 t = + 2 + perm. + 2 + perm. t = + 2 + perm. t = 2 1 t = 2 + + 1 2 + perm. t = + 2 + perm. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 16 / 23

YM theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 216] Γ (2) AA (p) Z A(p) p 2 ( δ µν p µ p ν /p 2) running couplings gluon propagator dressing 3 2 1 FRG, scaling FRG, decoupling Sternbeck et al. running couplings 1 1-2 1-4 1-6 2 1.5 1.5 α Acc α A 3 α A 4.1 1 1 p [GeV].1 1 1 1 p [GeV] more details Talk Anton K. Cyrol lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT26, 76. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 17 / 23

Quark propagator [MM, Pawlowski, Strodthoff, 214] Γ (2) qq (p) Z q(p) (/p + M(p)) quark propagator dressings 1.8.6.4.2 Bowman et al., 5 1/Z q M q.1 1 1 p [GeV] frg vs. lattice: bare mass, quenched, scale set via gluon propagator agreement not sufficient: need apparent convergence at µ lattice data: Bowman, Heller, Leinweber, Parappilly, Williams, Zhang, Phys. Rev. D71, 5457 (25). M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 18 / 23

Outlook: unquenching extended truncation: [Cyrol, MM, Pawlowski, Strodthoff, in prep.] Γ (2) AA (p) Γ(2) cc (p) Γ (3) A cc (psym) Γ (3) (psym) A 3 Γ (4) (psym) A 4 classical tensor classical tensor Γ(2) Γ (3) qq (p) A qq (p, q) Γ(4) Γ (5) Γ (4) AA qq (psym) (psym) A3 qq q qqq(p, p, p) q /D n q complete, n 3 mom. ind. tensors φ1 φn Γ(2) φφ (p) φ {σ, π} Γ (3) qqφ (p, p) Γ (4) qqφφ (psym) Γ(5) qqφ 3 (psym) n {3,..., 12} Γ(n) φ n () classical tensor classical tensor classical tensor systematics of improving the truncation? M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 19 / 23

Outlook: unquenching extended truncation: [Cyrol, MM, Pawlowski, Strodthoff, in prep.] Γ (2) AA (p) Γ(2) cc (p) Γ (3) A cc (psym) Γ (3) (psym) A 3 Γ (4) (psym) A 4 classical tensor classical tensor Γ(2) Γ (3) qq (p) A qq (p, q) Γ(4) Γ (5) Γ (4) AA qq (psym) (psym) A3 qq q qqq(p, p, p) q /D n q complete, n 3 mom. ind. tensors φ1 φn Γ(2) φφ (p) φ {σ, π} Γ (3) qqφ (p, p) Γ (4) qqφφ (psym) Γ(5) qqφ 3 (psym) n {3,..., 12} Γ(n) φ n () classical tensor classical tensor classical tensor systematics of improving the truncation? BRST-invariant operators, e.g. ψ /D n ψ M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 19 / 23

Outlook: running couplings α cac = α AAA = α A 4 = ( ) Γ (3) 2 cac (p) 4π Z A (p)z c(p) 2 ( Γ (3) AAA (p) ) 2 4π Z A (p) 3 ( Γ (4) A 4 (p) ) 4π Z A (p) 2 running couplings α X 2.5 2 1.5 1.5 α qaq = [Cyrol, MM, Pawlowski, Strodthoff, in preparation] ( Γ (3) qaq (p) ) 2 4π Z A (p)z q(p) 2 α cac,prop = 1 4π Z A (p)z c(p) 2 cac AAA A 4 qaq cac,prop.1 1 1 p [GeV] M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 2 / 23

Outlook: gluon propagator [Cyrol, MM, Pawlowski, Strodthoff, in preparation] gluon propagator dressing 1/Z A 3.5 3 2.5 2 1.5 1.5 Sternbeck et al. FRG.1 1 1 p [GeV] lattice data: A. Sternbeck, K. Maltman, M. Müller-Preussker, L. von Smekal, PoS LATTICE212 (212) 243. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 21 / 23

Outlook: quark propagator [Cyrol, MM, Pawlowski, Strodthoff, in preparation] quark propagator dressings 1.8.6 lattice, m π =28 MeV m π =295 MeV.4 FRG, m π =313.2.1 1 1 p [GeV] comparison frg with lattice: bare mass and scale setting lattice data: Orlando Oliveira, Kzlersu, Silva, Skullerud, Sternbeck, Williams, arxiv:165.9632 [hep-lat]. M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 22 / 23

Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 23 / 23

Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 23 / 23

Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators Outlook QCD phase diagram: order parameters, equation of state and fluct. of cons. charges (T, µ)-dependent input for effective low-energy descriptions bound-state properties (form factors,pda... ) more checks on convergence of vertex expansion M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 23 / 23

Summary and outlook low-energy effective descriptions with frg: EOS, kurtosis, axial anomaly, spectral functions, phase structure,... low-energy models can be improved with QCD input vacuum QCD from the frg: sole input αs (Λ = O(1) GeV) and m q (Λ = O(1) GeV) vertex expansion: good agreement with lattice correlators Outlook QCD phase diagram: order parameters, equation of state and fluct. of cons. charges (T, µ)-dependent input for effective low-energy descriptions bound-state properties (form factors,pda... ) more checks on convergence of vertex expansion M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 23 / 23