Compact Modeling of Ultra Deep Submicron CMOS Devices

Similar documents
EKV MOS Transistor Modelling & RF Application

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

MIXDES 2001 Zakopane, POLAND June 2001

MOSFET: Introduction

MOS Transistor I-V Characteristics and Parasitics

The Devices. Devices

The HV-EKV MOSFET Model

MOS Transistor Properties Review

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

The Devices: MOS Transistors

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Physics-based compact model for ultimate FinFETs

Integrated Circuits & Systems

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. 3. MOS Transistors

Advanced Compact Models for MOSFETs

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 3: CMOS Transistor Theory

EKV based L-DMOS Model update including internal temperatures

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

6.012 Electronic Devices and Circuits Spring 2005

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Device Models (PN Diode, MOSFET )

Microelectronics Part 1: Main CMOS circuits design rules

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 12: MOS Capacitors, transistors. Context

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

EE5311- Digital IC Design

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 4 Field-Effect Transistors

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Modeling of an Integrated Active Feedback Preamplifier in a 0.25 µm CMOS Technology at Cryogenic Temperatures

MOSFET Capacitance Model

Lecture 5: CMOS Transistor Theory

N Channel MOSFET level 3

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Device Models (PN Diode, MOSFET )

The PSP compact MOSFET model An update

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

VLSI Design The MOS Transistor

FIELD-EFFECT TRANSISTORS

Lecture 4: CMOS Transistor Theory

The Intrinsic Silicon

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

The Devices. Jan M. Rabaey

EE 560 MOS TRANSISTOR THEORY

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

CMOS Digital Integrated Circuits Analysis and Design

Long-channel MOSFET IV Corrections

Lecture 11: MOS Transistor

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

ECE 546 Lecture 10 MOS Transistors

The Physical Structure (NMOS)

Practice 3: Semiconductors

MOS Transistor Theory

A Multi-Gate CMOS Compact Model BSIMMG

Nanoscale CMOS Design Issues

MOS Transistor Theory

ECE 497 JS Lecture - 12 Device Technologies

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Chapter 13 Small-Signal Modeling and Linear Amplification

Semiconductor Physics Problems 2015

Introduction and Background

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Section 12: Intro to Devices

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Philips Research apple PHILIPS

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Chapter 2 MOS Transistor theory

ESE 570 MOS TRANSISTOR THEORY Part 2

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Section 12: Intro to Devices

Lecture 12: MOSFET Devices

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Simple and accurate modeling of the 3D structural variations in FinFETs

Semiconductor Integrated Process Design (MS 635)

Chapter 5 MOSFET Theory for Submicron Technology

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

Semiconductor Physics fall 2012 problems

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Transcription:

Compact Modeling of Ultra Deep Submicron CMOS Devices Wladyslaw Grabinski*, Matthias Bucher, Jean-Michel Sallese, François Krummenacher Swiss Federal Institute of Technology (EPFL), Electronics Laboratory, CH-115 Lausanne, Switzerland * Motorola, Modeling and Characterization Lab, CH-118 Le Grand Saconnex, Switzerland Trends of the MOSFET Devices Scaling Challenges of the Compact Modeling The EPFL EKV v.6 Model Model Formulation Recent Developments Analog and RF Application of the EKV v.6 Model Trends of the MOSFET Devices Scaling Channel Dimensions 1um 1um 1nm 1nm 4k 8k 64k 56k Clasic CMOS 1M Neuron Level Quantum Level 4M DRAM Production 16M 64M 56M 1G 4G 16G 64G56G Research Labs 1nm 1A 197 198 199 1 Years Predictable Moor s Law Technology Limitations Physical Limitations

State-of-art CMOS Technology CL15LV CL15H CL15LP Core Voltage 1. V V V Gate Dielectric - Core- IO, Analog Option Dual Å 7/5 Å Dual 7 Å 7 Å Dual 7 Å 7 Å Physical Gate.1 m.14 m.13 m M1:.39- m Contacted Metal Pitch M-6:.48- m M7:.9- m IOFF Spec. (worst case) < 1 na/ m < 1 na/ m <.5 na/ m Well Formation Isolation Super-steep retrograde Shallow trench isolation Salicide CoSi Metal Intermetal Dielectric AlCu or Cu, up to 7 layers Low-K Via Fill Lithography Tungsten or copper, with CMP Deep UV, with phase shifting mask TSMC Delivers Foundry's First.15 um Technology Development of the Compact Models 1 BSIM3v BSIM3v3 No. of Model Parameters 1 1 LEVEL LEVEL3 HSP8 BSIM BSIM BSIM3v3 BSIM BSIM3v BSIM4 BSIM HSP8 PCIM SP BSIM3v1 MM9 EKV v3. EKV v.6 LEVEL1 1 196 197 198 199 1 Number of DC model parameters vs. the year of the introduction of the model Years Including L,W,P scaling Without scaling Significant growth of the parameter number that includes geometry (W/L) scaling Most recent versions of the BSIM, EKV, MM and PCIM models are included

Compact Modeling Approaches Regional Approach: Easy to implement short-channel effects (but empirically), Simple implementation into simulation tools = fast execution Models are in public domain Discontinuous and ignores quantum effects Introduce Binning to improve scaliability Large number of parameters Surface Potential Based Approach: Most accurate, Needs iterative solution (no analytical solution), Complex implementation and slow execution time Hybrid Approach: Combines advantages of both presented approaches Good fitting demonstrated for.1um CMOS devices Public-domain model evolution: EKV Introduction of EKV model versions: 1994: v., first fully continuous model (1 parameters): continuous: weak/strong inversion, conduction/saturation symmetric forward/reverse operation: bulk reference drain current, capacitances, thermal noise, 1/f noise, NQS model mobility, velocity saturation, CLM, short-, narrow-channel effects 1995: v.3 (16 parameters): improved short-channel effects and RSCE, added substrate current 1996: new QS charge-conservative model 1997: v.6, applicable to deep sub- µm (.18µm) (18 parameters): coherent charge-based modeling of: static, QS, NQS and noise includes matching (statistical circuit simulation) 1999: v.6, new analytical NQS and polydepletion models : v3., has been announced

EKV v.6 MOSFET Model EKV v.6 available in major commercial circuit simulators: Antrim-AMS, Aplac, Eldo-Accusim, PSpice, Saber, SmartSpice, Smash, Spectre-RF, Star-HSpice. on-going implementations: ADS, MacSpice, Spice3, T-Spice, MINIMOS (TU Vienna), TRANZ-TRAN (TU Budapest) Visit: EKV model web site: <http://legwww.epfl.ch/ekv> Charge-based Static Model B V S V D V G S G D V G S G I D D DL/ L eff DL/ x V S B VD y Bulk-reference, symmetric model structure. Drain current expression including drift and diffusion: I D V D Q I β ---------- V Q d β ---------- I ch V Q I = = d β ---------- ch d V = I ch F I R V S C ox V S C ox V D C ox (1) where: W eff β = µ C' ------------ ox L eff

Drain Current Normalization and Pinch-off Voltage Current normalization using the Specific current : I S I D = I F I R = I S ( i f i r ) = nβu T V P Pinch-off voltage accounts for... ( ) i f i r () V TO γ = ( qε s N sub ) C ox threshold voltage and substrate effect γ P V G V TO γ V G V + TO Ψ + -- γ = Ψ + -- (3) Slope factor n: n 1 V P = = V G γ 1 + --------------------------- Ψ + V P (4) Pinch-off Voltage Characteristic V G I B V S =V P VTO I S I ---- B = n β U T Pinch-off voltage measurement at constant current (I S /) Gate voltage V G is swept and V P =V S is measured at the source for a transistor biased in moderate inversion and saturation

EKV v.6 Model Structure Coherent model for static, dynamic and noise aspects. physical model basis leads to accurate description of transconductance-to-current ratio at all current levels allows to derive all other model quantities in a coherent way Transconductance to current ratio g ms U ------------------ t I D g ms I D V S Static Model Dynamic Model Mobility Model Noise Model i f (V), i r (V) Q I,G,D,S,B (i f, i r ) µ s (Q B,Q I (i f, i r )) common variables to the entire model: normalized currents i f and i r (forward and reverse) S Nth (Q I (i f, i r )) Transconductance to Current Ratio.5um CMOS example.5um CMOS example Normalized transconductance-to-current ratio g ms U T I D vs. normalized current from weak thru moderate to strong inversion. D I S Measurement and simulation comparisons show that g ms /I D ratio is technology independent.

Mobility Model Influence of KP and E, respectively, on the transfer characteristic (low V DS ) Field- and position-dependent mobility: µ ( x) µ ' = -------------------------- where: E E 1 eff ( x) eff ( x) = + ----------------- E Q' B ( x) + η Q' inv ( x) -------------------------------------------------- ε ε si One parameter: E vertical critical field in the oxide No back-bias dependence needed due to inclusion of bulk charge (5) Reverse Short Channel Effect (RSCE).5um CMOS example.5um CMOS example Defect enhanced diffusion during fabrication leads to RSCE RSCE is modeled as a change in the threshold voltage depending on L eff Two model parameters Q and LK

Velocity Saturation Influence of UCRIT on the output characteristics A high lateral electric field in the channel causes the carrier velocity to saturate and limits the drain current. Parameter UCRIT accounts for this effect. Channel-Length Modulation (CLM) Influence of LAMBDA on the output characteristics The relative channel length reduction depends on the pinch-off point in the MOSFET channel near drain end. Depletion length coefficient (LAMBDA) models CLM effect.

Impact Ionization Current Influence of IBA and IBB, respectively, on the substrate current The substrate current is treated as a component of the total extrinsic current: I D = I DS + I DB Substrate current affects the total extrinsic conductances, in particular drain conductance (g DS ). (Trans-)Capacitances Model Intrinsic Capacitances C/(C ox WL).8.6.4.. T OX =6.6nm V D =V S =V W=µm, L=5µm C GG C GD =C GS C GB Simulated: Measured: 1 V G [V] 3 Transcapacitances: derivation with respect to the terminal voltage: C MN = ± ( Q M ) M, N = G, D, S, B V N Accurate capacitances through all inversion levels. Symmetric C GS and C GD at V D =V S =. (6)

Polydepletion modeling Normalized Transcapacitances [-] 1..8.6.4.. n-channel T ox =4.5nm L=1µm N s =4.1 16 cm -3 N p =1.1 19 cm -3 V FB =-.9V D sim. model C GG C DG =C SG C BG V D = V S = Normalized Transcapacitances [-] 1..8.6.4.. n-channel T ox =4.5nm L=1µm N s =4.1 16 cm -3 N p =1.1 19 cm -3 V FB =-.9V D sim. model C GG C SG C DG CBG V D =1V V S = - -1 V G [V] 1 3 - -1 V G [V] 1 3 Strengths of new polydepletion model: consistent effect from weak to strong inversion, conduction/saturation one single extra parameter: N POLY polydepletion only affects threshold voltage V TO, pinch-off voltage V P, and slope factor n Polydepletion modeling 6x1-6 5 n-channel L=1µm W=1µm T ox =4.5nm N s =4.1 16 cm -3 µ =6cm /Vs Θ=8.8nm/V I D [A] 4 3 D sim. model (N P =1.1 19 cm -3 ) D sim. model (N P =9.1.1 cm -3 ) V D =1V V D =.5V 1 V S = 1 V G - V FB [V] 3 comparison with D simulation with and without polydepletion no fitting parameters: same parameters used as for CV coherent with all other aspects of charge based model (IV, CV, thermal noise)

Vertical field dependent mobility modeling Deep sub- µm CMOS uses higher N sub lower µ Mobility µ depends on Q B, Q i (bias), N sub, T The scattering-limited mobility depends on, Coulomb-scattering (low field) [significant in.15µm CMOS even at room T] phonon-scattering (intermediate field) surface-roughness scattering (high field) Problem: difficult to address all dependencies together with few parameters mobility effects are position-dependent! Idea: use the charges model for modeling mobility model should have built-in temperature behaviour Vertical field dependent mobility modeling Effective Mobility µ eff 1 9 8 7 6 5 4 3 µ PH ~ E eff -. µ C ~ [1+ζ*Q' i ] - µ SR ~ E eff µ eff T=3K T ox =1nm N sub =4e17cm -3 1 ----- µ = 1 1 1 ------ + --------- + -------- µ C µ PH µ SR µ C N sub [ 1 + ζ Q i ]. µ PH E eff µ SR E eff 1 1 6 x16 3 4 5 Effective Vertical Field E eff E eff = Q B + η Q i ε si Strengths of new mobility model: directly linked to charges model position- (and bias-) dependence accounted for by integration along channel few parameters (5, none required for bias-dependence)

Velocity saturation modeling Velocity saturation is the main cause of reduction in short-channel MOS transistors NMOS and PMOS transistors have different µ ( E ) relationships NMOS is much more strongly affected by velocity saturation than PMOS I D µ µ = ---------------------------------------- (NMOS); µ = ----------------------------- (PMOS) 1 + ( E E c ) 1 + E E c µ Velocity saturation modeling has many implications: bias-dependence scaling asymptotic behaviour: series connection of multiple devices asymptotic behaviour at V DS Velocity saturation modeling 1 8 N=1 (approximate) N=1 (integral) V G /U T =1 1 8 N=1 (approximate) N=1 (integral) V G /U T =1 I D /I [-] 6 4 V S /U T = V G /U T =8 V G /U T =6 I D /I [-] 6 4 V S /U T = V G /U T =6 V G /U T =8 1 V G /U T =4 3 (V D -V S )/U T [-] NMOS δ= E c =3.1V/µm L=N*(.µm/N) 4 5 6 1 V G /U T =4 3 (V D -V S )/U T [-] PMOS 4 δ=1 E c =5V/µm L=N*(.µm/N) 5 6 Strengths of new velocity saturation model: charge-based, from strong to weak inversion correct multiple series devices behaviour improved scaling correct asymptotic behaviour at V DS

Non-quasistatic (NQS) AC modeling New physics-based NQS model Exact analytical solutions for complex transadmittances 1st and nd-order approximations «-order» approximation: coincides with QS model! No additional parameters Normalization of different quantities: normalized Currents, Potentials, Charges normalized Coordinates, Time, Frequency Non-quasistatic (NQS) AC modeling y DG (magnitude&phase), measurements, exact model, 1 st - & nd -order approximations Strengths of new NQS model: valid from strong through moderate to weak inversion simple analytical expressions for (complex) transadmittances entirely consistent with polydepletion, mobility model, etc. easy to implement in circuit simulators (access to complex admittances matrix)

18 Intrinsic Model Parameters EKV v.6 Parameter Set Purpose NAME DESCRIPTION UNITS EXAMPLE Process parameters Doping & Mobility related parameters Short- & narrow-channel effect parameters Substrate current related parameters COX gate oxide capacitance per unit area F m 3.45E-3 XJ junction depth m.15e-6 DW channel width correction m -.5E-6 DL channel length correction m -.1E-6 VTO long-channel threshold voltage V.55 GAMMA body effect parameter V.7 PHI bulk Fermi potential (*) V.8 KP transconductance parameter A V 16E-6 E vertical characteristic field for mobility reduction V m 8E6 UCRIT longitudinal critical field V m 4.E6 LAMBDA depletion length coefficient (channel length modulation) -.3 WETA narrow-channel effect coefficient -.1 LETA short-channel effect coefficient -.3 Q reverse short-channel effect peak charge density A s m 5E-6 LK reverse short-channel effect characteristic length m.34e-6 IBA first impact ionization coefficient 1 / m 6E6 IBB second impact ionization coefficient V / m 35E6 IBN saturation voltage factor for impact ionization - EKV v.6 Parameter Set (cont.) Completed with 3 matching parameters 4 temperature parameters noise parameters NAME DESCRIPTION UNITS Example AVTO area related threshold voltage mismatch parameter Vm - DEV=15E-9 AKP area related gain mismatch parameter m - DEV=5E-9 AGAMMA area related body effect mismatch parameter Vm - DEV=1E-9 NAME DESCRIPTION UNITS Example TCV threshold voltage temperature coefficient V/K E-3 BEX mobility temperature exponent - - UCEX longitudinal critical field temperature exponent -.8 IBBT temperature coefficient for IBB 1/K 9.E-4 NAME DESCRIPTION UNITS Example KF flicker noise coefficient - AF flicker noise exponent - 1

EKV v.6 Parameter Extraction Methodology PRELIMINARY EXTRACTION WIDE LONG WIDE SHORT NARROW LONG NARROW SHORT Extraction of DL, DW, RSH from several geometries specific current measurement specific current measurement L specific current measurement final check and fine tuning VP vs. VG VTO, GAMMA, PHI VP vs. VG VP LETA vs. VG VP LETA vs. VG LETA, Q, LK VP vs. VG WETA ID vs. VG KP, E ID vs. VD UCRIT, LAMBDA IB vs. VG IBA, IBB, IBN Sequential task: parameter extraction methodology established for EKV v.6 performed using an array of transistors in the W/L plane. EKV v.6 -.18um CMOS 6 5 L=1um L=.5um 3 L=.18um 5 4 15 3 1 15 1 1 5 5..5...5...5. 5 L=1um.5 L=.5um 5 L=.18um 4. x1-6 15 x1-3 x1-3 3 1 5.5 1..5....5...5. Transfer characteristics IdVg and gmgvg (low drain voltage Vd)

EKV v.6 -.18um CMOS 3 L=1um 4 L=.5um 1 L=.18um 5 8 3 6 15 4 1 5 1..5...5...5. 1-3 1-4 L=1um 1-3 L=.5um 1-8 6 4 L=.18um 1-5 1-4 1-3 8 1-6 6 4 1-7 1-5 1-4 8 1-8..5...5. 6..5. Output characteristics IdVd and gdsvd. D/A Converter Circuit I I I/ I/4 I/8 I/16 I/16 I I/ I/4 I/8 I/16 1.1 9 8 W(I1) W(I) W(I3) W(I4) W(I5) W(I6) correct response (EKV v.6 model) 1.4 W(I1) W(I) W(I3) W(I4) W(I5) W(I6) incorrect response (competitor s model) Normalized Current (MSB-LSB) 7 6 5 4 Normalized Current (MSB-LSB) 1.3 1. 1.1 3 1 1e-7 1e-6 1e-5 1e-4 Reference Current.9 1e-7 1e-6 1e-5 1e-4 Reference Current

RF Characterization: De-embedding Open-Short Open EKV v.6 Open-Short f t Open, Open-Short deembedding and simulation data up to 11GHz nmosfet Device: 3 x um/.35um Bias condition: V g =V, V d =V RF Power Amplifier s m m s a) V supply =V b) V supply =.7V Output power vs. input power characteristics (in dbm) a) supply voltage V supply = V b) supply voltage V supply =.7V

Harmonic Oscillator MM9 EKV v.6 Simulation results: MM9 vs. EKV v.6 Summary EPFL EKV v.6 MOST model is a charge-based compact model Continuous, physics-based model valid for all bias conditions. Includes charge-based static and dynamic models, and noise. Uses a low number of parameters EPFL-EKV model enables the simulation of ultra deep submicron CMOS integrated systems, from DC to RF Experimental validation down to.18um CMOS Circuit applications have been presented The model and related parameter extraction methodology have been developed at Electronics Labs of EPFL Web resource: <http://legwww.epfl.ch/ekv> Parameter extraction services and design support are available through Smart Silicon Systems, Lausanne Contact: modeling@smartsilicon.ch