Scattering Vector Mesons in D4/D8 model

Similar documents
Glueballs at finite temperature from AdS/QCD

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced ρ meson condensation

How I learned to stop worrying and love the tachyon

HUGS Dualities and QCD. Josh Erlich LECTURE 5

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

arxiv: v2 [hep-th] 18 Apr 2017

QCD and a Holographic Model of Hadrons

Gauge/String Duality and Quark Anti-Quark Potential

String/gauge theory duality and QCD

The Pion Form Factor in AdS/QCD

arxiv:hep-th/ v4 29 Dec 2005

Holographic Monopole Catalysis of Baryon Decay

Pomeron and Gauge/String Duality y

The E&M of Holographic QCD

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

String / gauge theory duality and ferromagnetic spin chains

Dynamical corrections to the anomalous holographic soft-wall model: the pomeron and the odderon

Hadronic phenomenology from gauge/string duality

Mesons as Open Strings

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV.

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

Bethe Salpeter studies of mesons beyond rainbow-ladder

Mapping String States into Partons:

Meson-Nucleon Coupling. Nobuhito Maru

towards a holographic approach to the QCD phase diagram

Light-Front Holographic QCD: an Overview

Nucleons from 5D Skyrmions

arxiv:hep-th/ v3 24 Apr 2007

A magnetic instability of the Sakai-Sugimoto model

N N Transitions from Holographic QCD

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2

Holographic QCD at finite (imaginary) chemical potential

Orthogonal Wilson loops in flavor backreacted confining gauge/gravity duality

Some insights into the magnetic QCD phase diagram from the Sakai-Sugimoto model

Quark-gluon plasma from AdS/CFT Correspondence

Glueballs and their decay in holographic QCD

Nucleon and photon structure functions at small x in a holographic QCD model

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Inverse magnetic catalysis in dense (holographic) matter

Lectures on. Holographic QCD. Shigeki Sugimoto (Kavli IPMU) 1/53. holography 2013 APCTP, Pohang 2013/6/19 and 20

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

QCD at finite temperature and density from holography

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Holography with backreacted flavor

Planar diagrams in light-cone gauge

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Putting String Theory to the Test with AdS/CFT

Intersecting branes and Nambu Jona-Lasinio model

HLbl from a Dyson Schwinger Approach

Implications of G p E(Q 2 )/G p M(Q 2 ).

Comments on finite temperature/density in holographic QCD

Holographic Geometries from Tensor Network States

arxiv: v1 [hep-th] 2 Apr 2009

arxiv: v2 [hep-th] 16 May 2017

Hadrons in a holographic approach to finite temperature (and density) QCD

Anomalous Strong Coupling

arxiv:hep-ph/ v2 26 Jul 2006 Andreas Karch 1, Emanuel Katz 2, Dam T. Son 3, Mikhail A. Stephanov 4

Chiral Symmetry Breaking from Monopoles and Duality

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy

arxiv:hep-ph/ v1 30 Oct 2005

Probing Nucleon Resonances on the Lattice

arxiv: v2 [hep-ph] 23 Apr 2009

Measurement of the Charged Pion Form Factor to High Q 2

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Valence quark contributions for the γn P 11 (1440) transition

Pion FF in QCD Sum Rules with NLCs

A Brief Introduction to AdS/CFT Correspondence

Excited states of the QCD flux tube

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

In memory of Ioannis Bakas,

On bound states in gauge theories with different matter content

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Dynamics of heavy quarks in charged N = 4 SYM plasma

Richard Williams. Hèlios Sanchis-Alepuz

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics

Quark Mass from Tachyon

Baryonic States in QCD From Gauge/String Duality at Large N C

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo

Medium Modifications of Hadrons and Electromagnetic Probe

Isospin and Electromagnetism

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program

arxiv: v1 [hep-th] 7 Nov 2018

QCDandString Theory. (Review) Shigeki Sugimoto (IPMU) (The main part is based on works with T.Sakai, H.Hata, S.Yamato, K. Hashimoto, T.

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Introduction to AdS/CFT

Light-Front Hadronic Models

Transcription:

Scattering Vector Mesons in D4/D8 model Marcus A. C. Torres C. A. Ballon Bayona H. Boschi-Filho N. Braga Instituto de Física Universidade Federal do Rio de Janeiro Light-Cone 2009: Relativistic Hadronic and Particle Physics

Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

Gauge/String duality vs. the Real QCD Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

Gauge/String duality vs. the Real QCD From Gauge/String duality towards Real QCD AdS/CFT provides means to reach strong coupling gauge theory, but it is not a QCD. To do: Break SUSY, add quarks, masses, χ, confinement D4-D8 brane model scale.

Gauge/String duality vs. the Real QCD From Gauge/String duality towards Real QCD AdS/CFT provides means to reach strong coupling gauge theory, but it is not a QCD. To do: Break SUSY, add quarks, masses, χ, confinement D4-D8 brane model scale.

Gauge/String duality vs. the Real QCD From Gauge/String duality towards Real QCD AdS/CFT provides means to reach strong coupling gauge theory, but it is not a QCD. To do: Break SUSY, add quarks, masses, χ, confinement D4-D8 brane model scale.

D4/D8 pion form factors Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

D4/D8 pion form factors Q 2 F Π Q 2 0.8 0.6 0.4 0.2 0 2 4 6 8 10 Q2 GeV 2 (a) Q 2 F π(q 2 ) plot from D4/D8 (b) Q 2 F π(q 2 ) prediction from model hardwall (dashed line), softwall (continuous line) [5] models and data

Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

N c (large) D4 branes fills M 1,3, x 4 (τ), with x 4 compactified in a circle. 4d SU(N c) YM on the brane N f probe branes D8, D8 fills M 1,3, {x 5, x 8 } and radial U(τ) χ symm SU(N f ) SU(N f ) dynamically broken.

N c (large) D4 branes fills M 1,3, x 4 (τ), with x 4 compactified in a circle. 4d SU(N c) YM on the brane N f probe branes D8, D8 fills M 1,3, {x 5, x 8 } and radial U(τ) χ symm SU(N f ) SU(N f ) dynamically broken.

Holography: 4d from 5d quarks confined D8-D8 gauge fields independent of {x 5, x 8 } directions. KK modes: vector ( v n µ) and axial vector mesons (a n µ). A µ(x µ, z) = P n=1 v (n) µ (x µ )ψ 2n 1 (z) + a (n) µ (x µ )ψ 2n (z) + A L, A R (x) ψ n: eigenfunctions of e.o.m. (orthonormal). λ n: eigenvalues m 2 n of (axial) vector mesons. S D8 d 9 x e φ det(g MN + 2πα F MN ) d 4 xl kin+mass 2g v n tr ( v n µv µ) +g v l v m v n ( µ v lν ν v lµ)[ v m µ, v n ν ] ( +g v l a m a µ v lν ν v lµ)[ a m n µ,aν] n +gv l a m a n( µ a nν ν a nµ ) ([ ] [ ]) vµ,a l ν m v l ν,aµ m

Holography: 4d from 5d quarks confined D8-D8 gauge fields independent of {x 5, x 8 } directions. KK modes: vector ( v n µ) and axial vector mesons (a n µ). A µ(x µ, z) = P n=1 v (n) µ (x µ )ψ 2n 1 (z) + a (n) µ (x µ )ψ 2n (z) + A L, A R (x) ψ n: eigenfunctions of e.o.m. (orthonormal). λ n: eigenvalues m 2 n of (axial) vector mesons. S D8 d 9 x e φ det(g MN + 2πα F MN ) d 4 xl kin+mass 2g v n tr ( v n µv µ) +g v l v m v n ( µ v lν ν v lµ)[ v m µ, v n ν ] ( +g v l a m a µ v lν ν v lµ)[ a m n µ,aν] n +gv l a m a n( µ a nν ν a nµ ) ([ ] [ ]) vµ,a l ν m v l ν,aµ m

Scattering Vector Mesons Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

Scattering Vector Mesons v nν g v m v n v p g v p γ µ v pµ v mρ Figure: Vector meson EM scattering. VMD F v n v m(q2 ) = p=1 v nν (k) J (V)µ (0) v mρ (k ) = f µνρ (k,k ) F v n v m(q2 ), g v p g m 2 v n v m v p v p Q 2 p=1 + 1 = 1 g v pg v n v m v p Q 2 m 2 v p p=1 g v pg v n v m v p Q 2 + m 2 v p = 1 + m2 v p Q 2.

Scattering Vector Mesons Sum Rules n m 2 v n MKK 2 Table: Masses and coupling constants = λ 2n 1 κ 1/2 g v n M 2 KK κ 1/2 g v n v 1 v 1 1 0.66931 2.10936 0.44658 2 2.87432 9.10785 0.14654 3 6.59118 20.7957 1.8434 10 2 4 11.79669 37.1502 3.6885 10 4 5 18.48972 58.1701 2.6953 10 4 6 26.67017 83.834 3.0775 10 5 7 36.33796 114.152 1.8572 10 5 8 47.49318 148.103 6.9961 10 6 9 53.6285 188.695 3.5081 10 6 F v m v n(q2 = 0) = 9 g v p g v n v m v p p=1 m 2 v p δ mn

Scattering Vector Mesons v 1 Elastic form factor Fv1 Q 2 1.0 Q 4 Fv1 Q 2 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 2 4 6 8 10 Q2 GeV 2 (a) Elastic form factor F v 1 vs Q 2 0 5 10 15 20 Q2 GeV 2 (b) Q 4 F v 1 vs Q 2 Superconvergence (Grigoryan and Radyushkin): 9 n=1 g v ng v n v 1 v 1 0.000945(M KK) 2 9 n=1 g v ng v n a 1 a 1 0.000903(M KK) 2

Scattering Vector Mesons a 1 Elastic form factor 1.0 0.8 0.6 0.4 Q 4 Fa 1 Q2 2.0 1.5 1.0 0.2 0.5 5 10 15 20 25 (c) Elastic form factor F a 1versus Q 2 5 10 15 20 25 Q2 GeV 2 (d) Q 4 F a 1 versus Q 2 Figure: a 1 elastic form factor

Wave functions Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

Wave functions Vanishing of higher 3-vertex coupling g v n = m 2 v nκ dz(1+z 2 ) 1/3 ψ 2n 1, g v 1 v 1 v p = κ dz(1+z 2 ) 1/3 ψ 2 1 ψ 2p 1 7 6 5 4 4 2 6 4 2 3 2 1 100 50 50 100 100 50 50 100 2 4 100 50 50 100 2 4 6 (a) ψ 1 (b) ψ 2 (c) ψ 60 ψ 2 1 selects small z region. In this region ψ 2p 1 cos(zλ 1/2 2p 1 )

Wave functions Regge Trajectory Λn 40 30 20 10 0 2 4 6 8 10 12 λ n(*) and 0.25n 2 (+) vs n n 1000 100 10 3 1 0.3 λ n(*) n 1.9 n 1.27 0.1 1 3 10 30 60 Loglog n

Quadratic radius Outline 1 Motivation Gauge/String duality vs. the Real QCD D4/D8 pion form factors 2 D4/D8 Brane Model 3 Work Scattering Vector Mesons Wave functions Quadratic radius 4 Summary

Quadratic radius Using the ρ (vector) meson form factor expression in the low Q 2 limit, in terms of the electric form factor: ( G ρ c (Q 2 ) = 1 Q2 6m 2 v 1 F v 1(Q 2 ) ) We found r 2 ρ = 6 d dq 2 Gρ c (Q 2 ) Q 2 =0 r 2 ρ = 0.57fm 2 While results from Dyson-Schwinger equations : r 2 ρ = 0.54fm 2

Summary Besides some weaknesses (mass spectrum, UV behavior), D4-D8 model shows adequate results, concerning vector meson EM scattering. Outlook Would our results improve if quarks were massive? What are the general features that makes D4-D8 model interesting? D4-D8 is not really a Top-down model, since M KK and κ are fixed by experimental values. What can be done?

Appendix For Further Reading For Further Reading I T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113 (2005) 843 [arxiv:hep-th/0412141]. T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114 (2005) 1083 [arxiv:hep-th/0507073]. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 095007 (2007) [arxiv:0706.1543 [hep-ph]]. H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650, 421 (2007) [arxiv:hep-ph/0703069]. S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008) [arxiv:0707.3859 [hep-ph]].