Electron-phonon interaction. Can dispersionless phonons provide relaxation?

Similar documents
Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers

Equilibration in ϕ 4 theory in 3+1 dimensions

Summary lecture VI. with the reduced mass and the dielectric background constant

Cooperative Phenomena

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

Semiclassical Electron Transport

Carrier-Phonon Interaction in Semiconductor Quantum Dots

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Electrically Driven Polariton Devices

Electron-phonon scattering (Finish Lundstrom Chapter 2)

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

White Rose Research Online URL for this paper:

Landau s Fermi Liquid Theory

Ultrafast Dynamics in Complex Materials

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Luminescence Process

Open Quantum Systems and Markov Processes II

Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60. With: Eli Wilner Dante Kennes Andrew Millis

Quantum Light-Matter Interactions

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Unified theory for collisional dephasing in strong radiation fields. A generalisation of the Karplus-Schwinger formula

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Field-Driven Quantum Systems, From Transient to Steady State

Part III: Impurities in Luttinger liquids

Two-Color three-pulse Photon Echoes

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Ab initio phonon calculations in mixed systems

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN)

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

THREE-dimensional electronic confinement in semiconductor

SUPPLEMENTARY INFORMATION

Stopping dynamics of ions passing through correlated honeycomb clusters

Mean field theories of quantum spin glasses

GeSi Quantum Dot Superlattices

Laser Induced Control of Condensed Phase Electron Transfer

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Relativistic magnetotransport in graphene

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

7. FREE ELECTRON THEORY.

The interaction of light and matter

22.51 Quantum Theory of Radiation Interactions

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Open quantum systems

Plasma Spectroscopy Inferences from Line Emission

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Theory of quantum dot cavity-qed

Supplementary Information for Experimental signature of programmable quantum annealing

A path integral approach to the Langevin equation

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Dispersion interactions with long-time tails or beyond local equilibrium

Polariton laser in micropillar cavities

Solid State Device Fundamentals

Non-equilibrium time evolution of bosons from the functional renormalization group

Talk online at

PHYSICAL SCIENCES PART A

S.K. Saikin May 22, Lecture 13

Introduction to Relaxation Theory James Keeler

Transient dynamics without time propagation

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

3. LATTICE VIBRATIONS. 3.1 Sound Waves

where β = 1, H = H µn (3.3) If the Hamiltonian has no explicit time dependence, the Greens functions are homogeneous in time:

Photoemission Studies of Strongly Correlated Systems

Lecture 1: The Equilibrium Green Function Method

Landau-Fermi liquid theory

Quantum Condensed Matter Physics Lecture 9

Quantum Kinetic Transport under High Electric Fields

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Semiconductor device structures are traditionally divided into homojunction devices

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport.

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Modeling of Transport and Gain in Quantum Cascade Lasers

8 Quantized Interaction of Light and Matter

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas

Transport in the Outer Core of Neutron Stars

Chapter 12: Semiconductors

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

F r (t) = 0, (4.2) F (t) = r= r a (t)

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence

Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Applications of Renormalization Group Methods in Nuclear Physics 2

A Zero Field Monte Carlo Algorithm Accounting for the Pauli Exclusion Principle

Optical Investigation of the Localization Effect in the Quantum Well Structures

Supplementary Materials

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation

Transport Properties of Semiconductors

Transient Intersubband Optical Absorption in Double Quantum Well Structure

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Introduction to DMFT

Transport coefficients in plasmas spanning weak to strong correlation

Dynamically assisted Sauter-Schwinger effect

Transcription:

Electron-phonon interaction. Can dispersionless phonons provide relaxation? P. Gartner, J. Seebeck, F. Jahnke Institute for Theoretical Physics University of Bremen Kiel, 21

Introduction Self-assembled quantum dots S. Anders et al., Phys. Rev. B 66, 12539 (22) Kiel, 21 2

Introduction Self-assembled quantum dots Energy spectrum electrons bound (QD) extended (WL) holes S. Anders et al., Phys. Rev. B 66, 12539 (22) Kiel, 21 2

Introduction Discrete spectrum important for optoelectronics Energy spectrum electrons controlled by quantum dot geometry Carrier kinetics bound (QD) extended (WL) holes Kiel, 21 2

Introduction Discrete spectrum important for optoelectronics controlled by quantum dot geometry Capture and relaxation electrons p shell photon s shell Carrier kinetics holes Kiel, 21 2

Introduction Low carrier densities carrier-carrier scattering negligible carrier-lo-phonon interaction dominant Perturbation theory: capture and relaxation prevented phonon bottleneck Kiel, 21 3

Introduction Low carrier densities carrier-carrier scattering negligible carrier-lo-phonon interaction dominant Perturbation theory: capture and relaxation prevented WL QD ω LO ω LO phonon bottleneck U.Bockelmann, G. Bastard, PRB 42, 8947 (199) H. Benisty et al., PRB 44, 1945 (1991) Kiel, 21 3

Introduction Experiment: fast (ps) capture and relaxation Kiel, 21 4

Introduction Experiment: fast (ps) capture and relaxation Example: S. Trumm et al. APL 87, 153113 (25) rapid relaxation inside wetting layer rapid transfer to bound states characteristic times (ps) independent of excitation power Kiel, 21 4

Outline Boltzmann kinetics relaxation properties, in general and with dispersionless LO-phonons Carrier-phonon system in equilibrium carrier renormalization = the polaron Quantum kinetics 2-time quantum kinetics 1-time approximation Results (QWs and QDs) Numerical difficulties Kiel, 21 5

Boltzmann kinetics Carrier-phonon Hamiltonian: H = X i ǫ i a i a i + X q ω qb qb q + X i,j,q M i,j (q)a i a j(b q + b q ) ǫ j ω q ω q = ω LO, M i,j (q) = g q ϕ i e iqr ϕ j gq 2 α 1 Fröhlich coupling q 2 ǫ i Kiel, 21 6

Boltzmann kinetics Carrier-phonon Hamiltonian: H = X i ǫ i a i a i + X q ω qb qb q + X i,j,q M i,j (q)a i a j(b q + b q ) ǫ j ω q ω q = ω LO, M i,j (q) = g q ϕ i e iqr ϕ j gq 2 α 1 Fröhlich coupling q 2 ǫ i Time evolution of population f i = a i a i : f i t = X j {W i,j (1 f i )f j W j,i (1 f j )f i } Kiel, 21 6

Boltzmann kinetics Carrier-phonon Hamiltonian: H = X i ǫ i a i a i + X q ω qb qb q + X i,j,q M i,j (q)a i a j(b q + b q ) ǫ j ω q ω q = ω LO, M i,j (q) = g q ϕ i e iqr ϕ j gq 2 α 1 Fröhlich coupling q 2 ǫ i Time evolution of population f i = a i a i : f i t = X j {W i,j (1 f i )f j W j,i (1 f j )f i } W i,j = Golden Rule transition rate j i : W i,j = 2π X M i,j (q) 2 {N qδ(ǫ i ǫ j ω q) + (N q + 1)δ(ǫ i ǫ j + ω q)} q Kiel, 21 6

Boltzmann kinetics Relaxation properties (analytic): conserves positivity: f i () = f i (t) stationary solution: f i (t) = 1/[e β(ǫ i µ) + 1] = F(ǫ i ) for any f i () f i (t) F(ǫ i ) as t provided all states can be connected using paths with nonzero transition rates. Kiel, 21 7

Boltzmann kinetics Relaxation properties (analytic): conserves positivity: f i () = f i (t) stationary solution: LO-phonons + continuous spectrum (QW).5.4 f i (t) = 1/[e β(ǫ i µ) + 1] = F(ǫ i ) f e.3.2 for any f i ().1 f i (t) F(ǫ i ) as t provided all states can be connected using paths with nonzero transition rates. 4 t(fs) 2-2 5 2 15 1 E(meV) 25 phonon cascade Kiel, 21 7

Boltzmann kinetics Relaxation properties (analytic): conserves positivity: f i () = f i (t) stationary solution: LO-phonons in quantum dots WL ω LO f i (t) = 1/[e β(ǫ i µ) + 1] = F(ǫ i ) for any f i () f i (t) F(ǫ i ) as t provided all states can be connected using paths with nonzero transition rates. QD ω LO phonon bottleneck Kiel, 21 7

Boltzmann kinetics Relaxation properties (analytic): conserves positivity: f i () = f i (t) stationary solution: LO-phonons in quantum dots WL ω LO f i (t) = 1/[e β(ǫ i µ) + 1] = F(ǫ i ) for any f i () QD ω LO f i (t) F(ǫ i ) as t provided all states can be connected using paths with nonzero transition rates. Proposed solutions: LO+LA: T.Inoshita, H.Sakaki, PRB.46, 726 (1992) LO+LO: A. Knorr group (Berlin) in press phonon bottleneck Kiel, 21 7

Boltzmann vs. quantum kinetics Experiment: fast capture and relaxation (ps) Boltzmann kinetics: weak coupling slow evolution long time no memory (Markovian) Kiel, 21 8

Boltzmann vs. quantum kinetics Experiment: fast capture and relaxation (ps) Boltzmann kinetics: weak coupling slow evolution long time no memory (Markovian) Quantum kinetics: strong coupling fast evolution both early and later times memory effects included Kiel, 21 8

Boltzmann vs. quantum kinetics Experiment: fast capture and relaxation (ps) Boltzmann kinetics: weak coupling slow evolution long time no memory (Markovian) Quantum kinetics: strong coupling fast evolution both early and later times memory effects included Relaxation properties (numeric) is a steady state reached? steady state = thermal equilibrium? Kiel, 21 8

Polarons + + + + + + + + + + + + electron polarizes crystal Kiel, 21 9

Polarons + + + + + + + + + + free carrier retarded GF G R α(t) = θ(t) i e i ǫαt G R α(ω) = 1 ω ǫ α + iδ + + electron polarizes crystal spectral function bg α(ω) = 2Im G R α(ω) = 2π δ( ω ǫ α) Kiel, 21 9

Polarons + + + + + + + + + + electron polarizes crystal + + free carrier retarded GF G R α(t) = θ(t) i e i ǫαt G R α(ω) = spectral function 1 ω ǫ α + iδ bg α(ω) = 2Im G R α(ω) = 2π δ( ω ǫ α) polaron retarded GF G R α(ω) = 1 ω ǫ α + Σ R α(ω) Σ R α(ω) self-energy for carrier-phonon interaction bg α(ω) =? Kiel, 21 9

Quantum well polaron Self-consistent Random Phase Approximation j i ff τ ǫ k Gk R (τ) = = Z τ dτ Σ R k (τ )G R k (τ τ ) 1.8.6.4.2 G R Σ = 1 2 E k 2 (mev) 3 8 12 16 2 4 τ(fs) arbitrary order in α multi-phonon processes GaAs at T= 3K α =.6, ω LO = 36 mev Kiel, 21 1

Quantum well polaron 1 ^G Spectral function 1-2 1-4 1-6 1-8 ^ G k= (ω) InGaAs/GaAs T=3K -4-3 -2-1 1 2 3 Energy (h _ ω-e G ) / h _ ω LO Kiel, 21 11

Quantum well polaron 1 ^G Spectral function 1-2 1-4 1-6 1-8 ^ G k= (ω) InGaAs/GaAs T=3K polaron shift energy broadening phonon satellites -4-3 -2-1 1 2 3 Energy (h _ ω-e G ) / h _ ω LO J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 71, 125327 (25) Kiel, 21 11

Quantum well polaron 1.E 1 Spectral function 1 1.E 2 1.E 4 1.E 6 1.E 8 1.E 1 1.E 12 8 1.E 2 1.E 3 1.E 4 1.E 5 1.E 6 1.E 7 1.E 8 6 1.E 9 4 1.E 1 1 k 2 4 2 2 ω E G / ω LO 4 1.E 11 ^G Spectral function 1-2 1-4 1-6 1-8 ^ G k= (ω) InGaAs/GaAs T=3K -4-3 -2-1 1 2 3 Energy (h _ ω-e G) / h _ ω LO Kiel, 21 12

Quantum well polaron 8 1.E 1 7 1.E 2 1.E 3 6 1.E 4 5 1.E 5 k 4 1.E 6 3 1.E 7 1.E 8 2 1.E 9 1 1 3 2 1 1 2 3 hw/hwlo 1.E 1 1.E 11 ^G Spectral function 1-2 1-4 1-6 1-8 ^ G k= (ω) InGaAs/GaAs T=3K -4-3 -2-1 1 2 3 Energy (h _ ω-e G) / h _ ω LO Kiel, 21 12

Quantum dot polaron LO-phonons + quantum dot states only Self-consistent Random Phase Approximation T.Inoshita, H.Sakaki, PRB 56, 261 (1998) K.Král, Z.Khás, PRB 57, 4355 (1998) finite number of phonons = diagonalization O.Verzelen, R.Fereira, G.Bastard, PRB 62, 489 (2) T.Stauber, R.Zimmermann, H. Castella, PRB 62, 7336 (2) BUT wetting layer states important for both kinetics and spectrum Kiel, 21 13

Quantum dot polaron LO-phonons + quantum dot + wetting layer states Kiel, 21 14

Quantum dot polaron LO-phonons + quantum dot + wetting layer states 1-2 QD p-shell 1-4 Spectral function 1-6 1-8 1-2 QD s-shell 1-4 1-6 1-8 InGaAs/GaAs T = 3K -5-4 -3-2 -1 1 2 Energy (h _ ω - E G ) / h _ ω LO E = 1.1 ω LO Kiel, 21 14

Quantum dot polaron LO-phonons + quantum dot + wetting layer states p 1-2 QD p-shell ω LO 1-4 s Spectral function 1-6 1-8 1-2 QD s-shell 1-4 Hybridization 1-6 1-8 InGaAs/GaAs T = 3K -5-4 -3-2 -1 1 2 Energy (h _ ω - E G ) / h _ ω LO E = 1.1 ω LO Kiel, 21 14

Quantum kinetics Quantity of interest: ρ α(t) = @ f e α(t) ψ α(t) ψ α(t) 1 f h α(t) 1 A = i G < α (t, t) electrons p shell 2x2 matrix in the band index, α = k, s, p photon s shell Methods: Equation of Motion hierarchy problem Nonequilibrium Green s Functions polaronic effects 2-time quantities holes Kiel, 21 15

Quantum kinetics Quantity of interest: 1 fα(t) e ψ α(t) ρ α(t) = @ A = i G < ψα(t) 1 fα(t) h α (t, t) 2x2 matrix in the band index, α = k, s, p Methods: Equation of Motion hierarchy problem Nonequilibrium Green s Functions polaronic effects 2-time quantities Nonequilibrium Green s Functions Closed Equations for G(t 1, t 2 ) = 1 D h ie T ψ(t 1 )ψ (t 2 ) i Procedure: solve for G α(t 1, t 2 ) recover physical data from the time-diagonal t 1 = t 2 Kiel, 21 15

Quantum kinetics 2-time Kadanoff-Baym equations: j i ff H (1) G α(t 1, t 2 ) = t 1 t 2 = {Σ G} α (t 1, t 2 ) t 1 Kiel, 21 16

Quantum kinetics 2-time Kadanoff-Baym equations: j i ff H (1) G α(t 1, t 2 ) = t 1 t 2 = {Σ G} α (t 1, t 2 ) j i ff + H (2) G α(t 1, t 2 ) = t 2 t 1 = {G Σ} α (t 1, t 2 ) Kiel, 21 16

Quantum kinetics 2-time Reparametrize: (t 1, t 2 ) = (t, t τ) t 2 t t - main time τ - relative time j i ff t H (1) + H (2) G α(t, t τ) = t 1 = {Σ G} α (t, t τ) {G Σ} α (t, t τ) τ Kiel, 21 16

Quantum kinetics 2-time Polaronic Green s Function: G R α(t, t τ) = G R α(τ) t 2 t initial condition natural memory cutoff equil. (t, t τ) t 1 τ Kiel, 21 16

Quantum kinetics 2-time i t GR,< k (t, t τ) = Σ δ k(t)g R,< k (t, t τ) G R,< k (t, t τ)σ δ k(t τ) + + i t GR,< k (t, t τ) ; τ coll Instantaneous self-energy: Σ δ k(t) = ǫ c k d vc E(t) d cv E(t) ǫ v k «The optical excitation connects the two bands. Kiel, 21 17

Quantum kinetics 2-time i t GR,< k (t, t τ) = Σ δ k(t)g R,< k (t, t τ) G R,< k (t, t τ)σ δ k(t τ) + + i t GR,< k (t, t τ) ; τ coll RPA self-energies: Σ R k (t, t ) = i X q g 2 q h i D > (t t )Gk q(t, R t ) + D R (t t )G k q(t, < t ) Σ < k (t, t ) = i X q g 2 q D < (t t )G < k q(t, t ) i D > (τ) = (N LO + 1) e i ω LO τ + N LO e i ω LO τ = i D < ( τ) Kiel, 21 17

Quantum kinetics 2-time Collision terms for G R : i t GR k (t, t τ) Z t = coll t τ h i dt Σ R k (t, t )Gk R (t, t τ) Gk R (t, t )Σ R k (t, t τ) t 2 t t Σ t τ G t 1 Kiel, 21 18

Quantum kinetics 2-time Collision terms for G R : i t GR k (t, t τ) Z t = coll t τ h i dt Σ R k (t, t )Gk R (t, t τ) Gk R (t, t )Σ R k (t, t τ) t 2 t t Σ t τ G t 1 Kiel, 21 18

Quantum kinetics 2-time Collision terms for G < : t 2 G t τ t Z t i t G< k (t, t τ) coll = dt h Σ R k (t, t )G < k (t, t τ) +Σ < G A G R Σ < G < (t, t )Σ Ai t memory depth G t 1 Σ Kiel, 21 19

Quantum kinetics 2-time Collision terms for G < : t 2 G t τ t Z t i t G< k (t, t τ) coll = dt h Σ R k (t, t )G < k (t, t τ) +Σ < G A G R Σ < G < (t, t )Σ Ai t memory depth G Σ G < (t 1, t 2 ) = ˆG < (t 2, t 1 ) h i G A (t 2, t 1 ) = G R (t 1, t 2 ) t 1 Kiel, 21 19

Quantum kinetics 2-time Initial conditions - the polaron Before the pulse = equilibrium «G R g R (t, t τ) = c (τ) gv R (τ) G < (t, t τ) = g R v (τ) «m e m o r y d e p t h t g < c (τ) = g > v (τ) = g R v (τ) = g > v (τ) g < v (τ) τ Kiel, 21 2

Quantum kinetics 2-time No t-evolution before excitation: i t GR,< k (t, t τ) = Σ δ k(t)g R,< k (t, t τ) G R,< k (t, t τ)σ δ k(t τ) + + i t GR,< k (t, t τ) ; τ coll Σ δ ǫ c k(t) = k ǫ v k «Σ δ k G R,< k (t, t τ) G R,< k (t, t τ)σ δ k = Kiel, 21 21

Quantum kinetics 2-time No t-evolution before excitation: t 2 G t τ t Z t i t G< k (t, t τ) coll = dt h Σ R k (t, t )G < k (t, t τ) +Σ < G A G R Σ < G < (t, t )Σ Ai t memory depth G t 1 Σ Kiel, 21 22

Quantum kinetics 2-time No t-evolution before excitation: t 2 G t τ t Z t i t G< k (t, t τ) coll = dt h Σ R k (t, t )G < k (t, t τ) +Σ < G A G R Σ < G < (t, t )Σ Ai t memory depth G Σ G R (t, t τ) = G < (t, t τ) = g R c (τ) g R v (τ) g R v (τ) ««t 1 Kiel, 21 22

Quantum kinetics 1-time Generalized Kadanoff-Baym ansatz (GKBA) G α (t, t ) i G R α(t t ) G α (t, t ) t > t Z d t fα(t) = 2Re dt X dt M α,β (q) 2 Gβ(t R t ) ˆG α(t R t ) β q n f α(t ) ˆ1 f β (t ) D > q (t t ) +ˆ1 f α(t ) f β (t )D < q (t t ) o D q (t) = N LO e iω LO t + (1 + N LO ) e ±iω LO t renormalized quasiparticles (polarons) beyond Markov approximation (memory effects) Kiel, 21 23

Quantum kinetics 1-time Generalized Kadanoff-Baym ansatz (GKBA) G α (t, t ) i G R α(t t ) G α (t, t ) t > t Z d t fα(t) = 2Re dt X dt M α,β (q) 2 e iǫ β(t t ) ˆe iǫα(t t ) β q n f ˆ1 α(t) f β (t) D q > (t t ) +ˆ1 f α(t) f β (t)d < q (t t ) o D q (t) = N LO e iω LO t + (1 + N LO ) e ±iω LO t bare particles Markov approximation (no memory effects) Kiel, 21 23

Quantum well results: polarization CdTe α =.31 T = 3K p p.16.12.8.4.16.12.8.4 5 1 15 2 E(meV) 25 8 4 t(fs) 4 5 1 15 E(meV) 2 25 8 4 4 t(fs) 2-time 1-time Strong dephasing Kiel, 21 24

Quantum well results: electron population CdTe α =.31 T = 3K f e f e.4.3.2.1.12.8.4 5 1 15 E(meV) 2 25 8 12 4 t(fs) 4 5 1 15 E(meV) 2 25 8 12 4 t(fs) 4 2-time 1-time Steady state reached Not the same! Kiel, 21 25

Kubo-Martin-Schwinger condition Exact relation in thermal equilibrium KMS condition Z f α = d( ω) 2π F(ω) b G α(ω) Kiel, 21 26

Kubo-Martin-Schwinger condition Exact relation in thermal equilibrium KMS condition Z f α = d( ω) 2π F(ω) b G α(ω) Non-interacting system b G α(ω) = 2π δ( ω ǫ α) f α = F(ǫ α) Kiel, 21 26

Kubo-Martin-Schwinger condition Exact relation in thermal equilibrium KMS condition Z f α = d( ω) 2π F(ω) b G α(ω) Non-interacting system G b α(ω) = 2π δ( ω ǫ α) f α = F(ǫ α) Interacting system Generalization of Fermi-Dirac distribution Kiel, 21 26

Kubo-Martin-Schwinger test in quantum wells CdTe, α =.31 GaAs, α =.6 f e.4.3.2.1 2 time 1 time KMS.6.4 f e.2.1.1 1e 6 1e 8 1 2 2 time 1 time KMS 3 4 5 1 15 E ~k 2 (mev) 2 25 5 1 15 2 25 E ~k 2 (mev) 3 35 4 P. Gartner, J. Seebeck, F. Jahnke, Phys. Rev. B 73, 11537 (26) Kiel, 21 27

Kubo-Martin-Schwinger test in quantum dots CdTe α =.31 E = 2.4 ω LO p-level excitation electrons 2-time calculation photon p shell s shell f e.2.1 QD s state QD p state WL k= relaxation s shell p shell holes 4 8 12 t (fs) Kiel, 21 28

Kubo-Martin-Schwinger test in quantum dots CdTe α =.31 E = 2.4 ω LO p-level excitation 1-time calculation 2-time calculation f e.2.1 QD s state QD p state WL k= f e.2.1 QD s state QD p state WL k= 2 4 6 t (fs) 4 8 12 t (fs) Kiel, 21 28

Numerics: instabilities.5.4 fefh+ct8 every :::79::79 u 2:3 fefh+ct8 every :::89::89 u 2:3.3.2.1.1 5 1 15 2 25 3 detuning = 12 mev t = 55fs t = 65fs abrupt cut of the collision integrals at memory depth = 5 fs Kiel, 21 29

Numerics: instabilities Collision integral t t 2 G t τ t memory depth G Σ Kiel, 21 3

Numerics: instabilities Collision integral t t 2 G t τ integral abruptly cut at memory depth t G Σ memory depth Kiel, 21 3

Numerics: instabilities Collision integral t t 2 G t τ integral abruptly cut at memory depth t G Σ beyond the memory depth extend with equilibrium Σ, G memory depth Kiel, 21 3

Numerics: instabilities Collision integral t t 2 G t τ integral abruptly cut at memory depth t G Σ beyond the memory depth extend with equilibrium Σ, G memory depth smooth interpolation to equilibrium Σ, G Kiel, 21 3

Numerics: instabilities Collision integrals extended with equilibrium GFs.35.3 fefh+c14 every :::79::79 u 2:3 fefh+c14 every :::89::89 u 2:3.8.6 fefh+c14 every :::79::79 u 2:3 fefh+c14 every :::99::99 u 2:3.25.4.2.2.15.1.2.5.4 5 1 15 2 25 3.6 5 1 15 2 25 3 t = 55fs t = 65fs t = 55fs t = 75fs Kiel, 21 31

Numerics: instabilities Collision integrals extended with equilibrium GFs smooth change using an interpolating (Fermi-like) function.4.35 fefh+c25 every :::79::79 u 2:3 fefh+c25 every :::99::99 u 2:3.3.25.2.15.1.5 5 1 15 2 25 3 t = 55fs t = 75fs Kiel, 21 32

Low temperatures The polaron G R α(t) WL p-shell s-shell.8 1.6.4.2-3 -2-1 1 2 energy ǫ e α in hω LO 1.5 1.5 time in ps Polaronic GF: GaAs at T=1K Kiel, 21 33

Low temperatures The polaron spectral function Ĝα(ω) 1 1.1.1.1.1 WL, k= s-shell p-shell 1e-5-6 -4-2 2 4 energy in hω LO Spectral function: GaAs at T=1K Kiel, 21 33

Low temperatures Quantum kinetics 1-time Z d t fα(t) = 2Re dt X dt M α,β (q) 2 Gβ(t R t ) ˆG α(t R t ) β q n f α(t ) ˆ1 f β (t ) D q > (t t ) +ˆ1 f α(t ) f β (t )D < q (t t ) o Kiel, 21 34

Low temperatures Quantum kinetics 1-time Z d t fα(t) = 2Re dt X dt M α,β (q) 2 Gβ(t R t ) ˆG α(t R t ) β q n f α(t ) ˆ1 f β (t ) D q > (t t ) +ˆ1 f α(t ) f β (t )D < q (t t ) o 2 Gα(t) R = 1 i Θ(t) 4 X j 3 e i (ǫα α,j)t + Gα(t) R 5 G R α(t) for t Kiel, 21 34

Low temperatures WL electron population.5.4.3.2.1 population 1 2 energy in hω LO 2-time 3 4 1.5 time in ps.5.4.3.2.1 population 1 2 energy in hω LO 3 1-time 4 1.5 time in ps Kiel, 21 35

Low temperatures Electron population (long time) population.6.4.2.5 1 1.5 2 2.5 3 energy in hω LO 5 1 15 2 25 time in ps population.1.9.8.7.6.5.4.3.2.1 s-shell p-shell -5 5 1 15 2 25 time in ps Kiel, 21 36

Low temperatures KMS test of the steady state population.14.12.1.8.6.4.2 1.1.1.1.1 1e-5 KMS kinetics 1e-6-3 -2-1 1 2 3 4-3 -2-1 1 2 3 4 energy in hω LO no thermalization (asymptotic bottleneck) Kiel, 21 37

Summary and conclusions Carrier-LO-phonon interaction role - twofold: equilibrium: polaron kinetics: polaron-phonon scattering Relaxation properties (room temp.): Steady state reached both in 2-time and in 1-time kinetics Thermalization: 2-time kinetics: Yes! 1-time kinetics, only low α Problems with low temperatures: 2-time - only the early kinetics 1-time - no thermalization (asymptotic bottleneck?) Kiel, 21 38