High Energy Neutrino Astronomy

Similar documents
IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

High Energy Neutrino Astrophysics Latest results and future prospects

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Particle Physics Beyond Laboratory Energies

High energy neutrino astronomy with the ANTARES Cherenkov telescope

Neutrino Astronomy. Ph 135 Scott Wilbur

Origin of Cosmic Rays

neutrino astronomy francis halzen university of wisconsin

Kurt Woschnagg UC Berkeley

IceCube: Dawn of Multi-Messenger Astronomy

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

neutrino astronomy francis halzen University of Wisconsin

IceCube Results & PINGU Perspectives

Muon Reconstruction in IceCube

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Lessons from Neutrinos in the IceCube Deep Core Array

High Energy Neutrino Astronomy lecture 2

Implications of neutrino flux limits

C. Spiering, CERN School Zeuthen, Sept.2003

Coll. Ljubljana, H.Kolanoski - IceCube Neutrino Observatory 1. Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Neutrino Astronomy at the South Pole AMANDA and IceCube

an introduction What is it? Where do the lectures fit in?

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

The new Siderius Nuncius: Astronomy without light

NEUTRINO ASTRONOMY AT THE SOUTH POLE

Neutrino & γ-ray astronomy

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Neutrino Astronomy with AMANDA

Sungkyunkwan University, Korea

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos

High Energy Neutrino Astrophysics with IceCube

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Mediterranean Neutrino Telescopes

Neutrino Astronomy at the South Pole

Neutrino induced muons

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Searches for astrophysical sources of neutrinos using cascade events in IceCube

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

Indirect Dark Matter Detection

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Miami Conference December 15-20, 2011 Fort Lauderdale, FL. A.R. Fazely Southern University, Baton Rouge, LA

Catching Neutrinos with an IceCube

Neutrino Radiography of the Earth with the IceCube Neutrino Observatory

IceCube: Ultra-high Energy Neutrinos

Neutrino Physics: an Introduction

Frederick Reines and Clyde Cowan report the first direct evidence for neutrinos.

APP-VII Introduction to Astro-Particle Physics. Maarten de Jong

Cosmic IceCube Neutrino Observatory Elisa Resconi

(7) Instrumentation in high energy neutrino experiments

arxiv:astro-ph/ v1 7 Oct 1999

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Status of the BAIKAL-GVD Project

arxiv: v1 [astro-ph.he] 28 Jan 2013

Understanding High Energy Neutrinos

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Astroparticle Physics with IceCube

Astronomy with neutrinos: AMANDA and IceCube

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll.

The current status of the neutrino telescope experiments

Neutrinos in Astrophysics and Cosmology

Results of the search for magnetic

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

High Energy Emission. Brenda Dingus, LANL HAWC

Search for GeV neutrinos associated with solar flares with IceCube

Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT

Detectors for astroparticle physics

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Gamma-ray Astrophysics

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

Windows on the Cosmos

Cosmology and fundamental physics with extragalactic TeV γ-rays?

Multi-messenger Astronomy. Elisa Resconi ECP (Experimental Physics with Cosmic Particles) TU München

Possible Interpretations of IceCube High Energy Neutrinos

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Exploring the high-energy universe with the AMANDA and IceCube detectors

Neutrino Astronomy fast-forward

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

Measurement of the CR e+/e- ratio with ground-based instruments

Neutrino Oscillations

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Gustav Wikström. for the IceCube collaboration

Christian Spiering, DESY

Search for Neutrino Emission from Fast Radio Bursts with IceCube

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES

Transcription:

High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen

Content Lecture 1 Scientific context Operation principles The detectors Atmospheric neutrinos Lecture 2 Search for steady point sources Search for transient sources and the multi-messenger concept The diffuse flux of cosmic neutrinos Search for Dark Matter (indirect) and magnetic monopoles A look to the future

Neutrinos: a synoptic spectrum underground optical: - deep water - deep ice - air showers - radio - acoustics

First ideas 1960 K. Greisen F. Reines M. Markov (with I. Zheleznykh) discuss ways to detect cosmic high-energy neutrinos deep underground or underwater.

Moisej Markov Bruno Pontecorvo M.Markov,1960: We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation Proc. 1960 ICHEP, Rochester, p. 578.

Physics with neutrino telescopes Search for the sources of high-energy cosmic rays with neutrinos Dark Matter and Exotic Physics WIMPs Magnetic Monopoles and other superheavies Violation of Lorentz invariance Neutrino and Particle Physics Neutrino oscillation studies Charm physics, cross sections at highest energies, Supernova Collapse Physics MeV neutrinos in bursts early SN phase, neutrino hierarchy,... Cosmic Ray Physics Spectrum, composition and anisotropies

Physics with neutrino telescopes Search for the sources of high-energy cosmic rays with neutrinos Dark Matter and Exotic Physics p + WIMPs target + +.. Magnetic Monopoles and other superheavies Violation of Lorentz invariance Neutrino and Particle Physics Neutrino oscillation studies Charm physics, cross sections at highest energies, Supernova Collapse Physics MeV neutrinos in bursts early SN phase, neutrino hierarchy,... Cosmic Ray Physics Spectrum, composition and anisotropies + + e + + e + at source: e : : = 1:2:0 at Earth: e : : = 1:1:1

Charged cosmic rays vs. gamma rays vs. neutrinos Charged particles,

Gamma Rays: hadronic or electromagnetic origin? Hadronic: Electromagnetic (Inverse Compton Scattering):

An electron-hadron accelerator -TeV

An electron accelerator -TeV

E 2 dn/de radio infrared visible light X-rays VHE -rays Proton Accelerators Electron Accelerators C telescopes Fermi Stars Dust 0 CMB Synchrotron Radiation Inverse Compton ln (E)

The viewing range 99% of the Universe AGN Nearby Clusters 99.999999% of the Universe Local Group Milky Way

Detection deep under-ground/-water/-ice

Atmospheric neutrinos

Astrophysical ( cosmic ) neutrinos

How to detect high energy neutrinos The traditional way: muons from CC interactions

Neutrino cross sections

Neutrino cross sections

Neutrino cross sections W

Neutrino cross sections slide R. Nahnhauer

Neutrino cross sections Only way to distinguish and anti-!

Muon energy loss 0.002

Muon energy loss and range in water

Number of muon events per detection area A µ and observation time T E,min de E, P E,E e E N Z AT,min E N E,,min Neutrino flux spectrum tot A

Number of muon events per detection area A µ and observation time T E,min de E, P E,E e E N Z AT,min E N E,,min Neutrino flux spectrum tot A Probability to produce a detectable (E >E min ) muon P 10-3 E,min =1GeV E 1TeV,min 10-6 @ 1 TeV LogE (GeV)

Number of muon events per detection area A µ and observation time T E,min de E, P E,E e E N Z AT,min E N E,,min Neutrino flux spectrum tot A Probability to produce a detectable (E >E min ) muon Earth transparency mto HE neutrinos P Earth 1 TeV 10 TeV 100 TeV deg

Neutrino effective area for IceCube cut against atm.

Pointing accuracy

Tracks, showers, double bang events

Two Detection Modes: tracks and cascades + A + e, e, + Angular resolution < 1 de/dx gives E within factor 2-3 X X + Angular resolution 2-15 @ 100 TeV Energy resolution ~ 15%

Two Detection Modes + A + e, e, + Angular resolution < 1 de/dx gives E within factor 2-3 X X + Angular resolution 2-15 @ 100 TeV Energy resolution ~ 15%

The (first) pioneer

1978: 1.26 km³ 22,698 OMs 1980: 0.60 km³ 6,615 OMs 1982: 0.015 km³ 756 OMs 1988: 0.002 km³ 216 OMs DUMAND-II

Operating neutrino telescopes Antares Baikal AMANDA IceCube

NT200 in Lake Baikal: the (second) pioneer 8 strings 192 PMTs Height 72 m Diameter 42 m

1994: The first Underwater Neutrino

A textbook underwater neutrino event 1996

V. Bertin - CPPM - ARENA'08 @ Roma 2500m ANTARES 885 PMTs 12 strings Operating in final configuration since 2008 450 m 70 m

IceCube Neutrino Observatory IceTop air shower detector 81 pairs of water Cherenkov tanks 1450m 2450m 2820m IceCube 86 strings including 8 Deep Core strings 60 PMT per string DeepCore 8 closely spaced strings Threshold: IceCube DeepCore ~ 100 GeV ~10 GeV

IceCube Neutrino Observatory Events per year: - Downgoing muons ~ 2 10 11 - Atmospheric neutrinos ~ 100,000 1450m - Cosmic neutrinos ~ 100 2450m 2820m Threshold: IceCube DeepCore ~ 100 GeV ~10 GeV

46 institutions from 12 countries

46 institutions from 11 countries

Neumayer Amundsen-Scott Vostok Mirny Mc Murdo Concordia Dumont D Urville

The Amundsen-Scott Station South Pole Station Building Astronomy Sector IceCube AMANDA skiway

Infrastructure and support: NSF / Raytheon Polar Services NSF/ Lockheed Martin (ASC)

The drill camp - 5 MW power - 16 m³ Kerosine per hole

Construction 2004-2010 IC-59 08-09 Season IC-86 10-11 Season IC-79 09-10 Season IC-1 04-05 Season IC-40 07-08 Season IC-9 05-06 Season IC-22 06-07 Season

Besseres Bild 18.Dec. 2010: the last string

The Digital Optical Module (DOM) Penetrator HV Divider DOM Mainboard LED Flasher Board Mu-metal grid Delay Board PMT RTV gel Glass Pressure Housing Failure rate < 2 DOM/year (out of > 5000!)

IceCube Laboratory and Data Center

Performance

Ice properties Scattering coefficient Much stronger scattering than in water! Absorption coefficient Up to 2 times less absorption than in water

CHERENKOV PHOTONS are quickly diffused by light scattering

Atmospheric neutrinos

SPECTRUM AT HIGH ENERGIES (> 100 GEV)

Atmospheric muon neutrinos in IceCube de /dx E E (0) E Measured de/dx Monte Carlo: Correlation between de/dx and E Phys.Rev.D83:012001,2011 and arxiv:1010:3980

IceCube: Spectrum of atmospheric neutrinos proton c,(b) prompt π e,μ νe,μ μ e νμ νμ νe conventional Phys.Rev. D91 (2015) 122004)

IceCube: Spectrum of atmospheric neutrinos.. and ANTARES arxiv:1308.1599 Phys.Rev. D91 (2015) 122004)

Measurement of atmospheric e Signature: cascade events Subtract NC events and background Phys. Rev. Lett. 110 (2013) 151105 and arxiv:1212.4760

Impact of non-atmospheric (i.e. cosmic) neutrinos at > 100 TeV

Impact of non-atmospheric (i.e. cosmic) neutrinos at > 100 TeV

OSCILLATION PHYSICS

Oscillations of atmospheric neutrinos Vertically upward Muon neutrino survival probability cosmic ray Earth L q Horizontal

DeepCore: Oscillations for atmospheric neutrinos (E < 30-40 GeV) Consistent and competitive with accelerator-based measurement Different energy range and baseline than for accelerator studies!

IceCube: search for sterile neutrinos (E > 1 TeV) MSW resonance-like transition of atm. to s at high energies Sensitive to mixing angle q 24

END OF LECTURE 1